H-ß-Ala-OHGABA uptake inhibitor (GAT-2 and -3). Also glycine receptor agonist CAS# 107-95-9 |
2D Structure
Quality Control & MSDS
3D structure
Package In Stock
Number of papers citing our products
Cas No. | 107-95-9 | SDF | Download SDF |
PubChem ID | 239 | Appearance | Powder |
Formula | C3H7NO2 | M.Wt | 89.1 |
Type of Compound | N/A | Storage | Desiccate at -20°C |
Synonyms | beta-Alanine | ||
Solubility | H2O : 33.33 mg/mL (374.12 mM; Need ultrasonic) | ||
Chemical Name | 3-aminopropanoic acid | ||
SMILES | C(CN)C(=O)O | ||
Standard InChIKey | UCMIRNVEIXFBKS-UHFFFAOYSA-N | ||
Standard InChI | InChI=1S/C3H7NO2/c4-2-1-3(5)6/h1-2,4H2,(H,5,6) | ||
General tips | For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months. We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months. Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it. |
||
About Packaging | 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial. 2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial. 3. Try to avoid loss or contamination during the experiment. |
||
Shipping Condition | Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request. |
Description | Non-specific endogenous agonist at the inhibitory glycine receptor. More selective than taurine. Also distinguishes between GABA transporters (IC50 values are 19, 58, 110, 1320 and 5690 μM for rGAT-2, hGAT-3, rGAT-3, hBGT-3 and hGAT-1 respectively). |
H-ß-Ala-OH Dilution Calculator
H-ß-Ala-OH Molarity Calculator
1 mg | 5 mg | 10 mg | 20 mg | 25 mg | |
1 mM | 11.2233 mL | 56.1167 mL | 112.2334 mL | 224.4669 mL | 280.5836 mL |
5 mM | 2.2447 mL | 11.2233 mL | 22.4467 mL | 44.8934 mL | 56.1167 mL |
10 mM | 1.1223 mL | 5.6117 mL | 11.2233 mL | 22.4467 mL | 28.0584 mL |
50 mM | 0.2245 mL | 1.1223 mL | 2.2447 mL | 4.4893 mL | 5.6117 mL |
100 mM | 0.1122 mL | 0.5612 mL | 1.1223 mL | 2.2447 mL | 2.8058 mL |
* Note: If you are in the process of experiment, it's necessary to make the dilution ratios of the samples. The dilution data above is only for reference. Normally, it's can get a better solubility within lower of Concentrations. |
Calcutta University
University of Minnesota
University of Maryland School of Medicine
University of Illinois at Chicago
The Ohio State University
University of Zurich
Harvard University
Colorado State University
Auburn University
Yale University
Worcester Polytechnic Institute
Washington State University
Stanford University
University of Leipzig
Universidade da Beira Interior
The Institute of Cancer Research
Heidelberg University
University of Amsterdam
University of Auckland
TsingHua University
The University of Michigan
Miami University
DRURY University
Jilin University
Fudan University
Wuhan University
Sun Yat-sen University
Universite de Paris
Deemed University
Auckland University
The University of Tokyo
Korea University
H-ß-Ala-OH
- 3-Methyl-1-butylamine
Catalog No.:BCN1810
CAS No.:107-85-7
- N-Methyltaurine
Catalog No.:BCN1751
CAS No.:107-68-6
- Betaine
Catalog No.:BCN6303
CAS No.:107-43-7
- Taurine
Catalog No.:BCN1750
CAS No.:107-35-7
- Propylamine
Catalog No.:BCN1814
CAS No.:107-10-8
- Boc-isoleucinol
Catalog No.:BCC3096
CAS No.:106946-74-1
- Adefovir
Catalog No.:BCC8808
CAS No.:106941-25-7
- Boc-D-Leucinol
Catalog No.:BCC2723
CAS No.:106930-51-2
- Valproic acid sodium salt (Sodium valproate)
Catalog No.:BCC2156
CAS No.:1069-66-5
- 5-Allyl-3-methoxy-6-methyl-7-(3,4,5-trimethoxyphenyl)bicyclo[3.2.1]oct-3-ene-2,8-dione
Catalog No.:BCN1632
CAS No.:106894-43-3
- BIBP 3226 trifluoroacetate
Catalog No.:BCC7456
CAS No.:1068148-47-9
- Diethyl Acetamidomalonate
Catalog No.:BCC2841
CAS No.:1068-90-2
- Sarcosine
Catalog No.:BCN2744
CAS No.:107-97-1
- Granisetron HCl
Catalog No.:BCC1060
CAS No.:107007-99-8
- Amyloid Beta-Peptide (12-28) (human)
Catalog No.:BCC1044
CAS No.:107015-83-8
- O-Phosphorylethanolamine
Catalog No.:BCN1759
CAS No.:1071-23-4
- EIT hydrobromide
Catalog No.:BCC6824
CAS No.:1071-37-0
- Apo-12'-Lycopenal
Catalog No.:BCC8298
CAS No.:1071-52-9
- Adipic dihydrazide
Catalog No.:BCC8810
CAS No.:1071-93-8
- 8,9-Dihydroxy-10-isobutyryloxythymol
Catalog No.:BCN7974
CAS No.:107109-97-7
- Perindopril Erbumine
Catalog No.:BCC3586
CAS No.:107133-36-8
- Pyrocincholic acid methyl ester
Catalog No.:BCN5873
CAS No.:107160-24-7
- MAC13243
Catalog No.:BCC1727
CAS No.:1071638-38-4
- Deoxyflindissone
Catalog No.:BCN7268
CAS No.:107176-31-8
Pharmacology of the inhibitory glycine receptor: agonist and antagonist actions of amino acids and piperidine carboxylic acid compounds.[Pubmed:7476923]
Mol Pharmacol. 1995 Nov;48(5):919-27.
To define structure-activity relations for ligands binding to the inhibitory glycine receptor (GlyR), the agonistic and antagonistic properties of alpha- and beta-amino acids were analyzed at the recombinant human alpha 1 GlyR expressed in Xenopus oocytes. The agonistic activity of alpha-amino acids exhibited a marked stereoselectivity and was highly susceptible to substitutions at the C alpha-atom. In contrast, alpha-amino acid antagonism was not enantiomer dependent and was influenced little by C alpha-atom substitutions. The beta-amino acids taurine, beta-aminobutyric acid (beta-ABA), and beta-aminoisobutyric acid (beta-AIBA) are partial agonists at the GlyR. Low concentrations of these compounds competitively inhibited glycine responses, whereas higher concentrations elicited a significant membrane current. Nipecotic acid, which contains a trans-beta-amino acid configuration, behaved as purely competitive GlyR antagonist. Our data are consistent with the existence of a common binding site for all amino acid agonists and antagonists, at which the functional consequences of binding depend on the particular conformation a given ligand adopts within the binding pocket. In the case of beta-amino acids, the trans conformation appears to mediate antagonistic receptor binding, and the cis conformation appears to mediate agonistic receptor binding. This led us to propose that the partial agonist activity of a given beta-amino acid is determined by the relative mole fractions of the respective cis/trans conformers.
Tiagabine, SK&F 89976-A, CI-966, and NNC-711 are selective for the cloned GABA transporter GAT-1.[Pubmed:7851497]
Eur J Pharmacol. 1994 Oct 14;269(2):219-24.
gamma-Aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the mammalian brain. The synaptic action of GABA is terminated by rapid uptake into presynaptic terminals and surrounding glial cells. Molecular cloning has revealed the existence of four distinct GABA transporters termed GAT-1, GAT-2, GAT-3, and BGT-1. Pharmacological inhibition of transport provides a mechanism for increasing GABA-ergic transmission, which may be useful in the treatment of various neuropsychiatric disorders. Recently, a number of lipophilic GABA transport inhibitors have been designed and synthesized, which are capable of crossing the blood brain barrier, and which display anticonvulsive activity. We have now determined the potency of four of these compounds, SK&F 89976-A (N-(4,4-diphenyl-3-butenyl)-3-piperidinecarboxylic acid), tiagabine ((R)-1-[4,4-bis(3-methyl-2-thienyl)-3-butenyl]-3- piperidencarboxylic acid), CI-966 ([1-[2-[bis 4-(trifluoromethyl)phenyl]methoxy]ethyl]-1,2,5,6-tetrahydro-3- pyridinecarboxylic acid), and NNC-711 (1-(2-(((diphenylmethylene)amino)oxy)ethyl)-1,2,4,6-tetrahydro-3- pyridinecarboxylic acid hydrochloride), at each of the four cloned GABA transporters, and find them to be highly selective for GAT-1. These data suggest that the anticonvulsant activity of these compounds is mediated via inhibition of uptake by GAT-1.
A novel antagonist, phenylbenzene omega-phosphono-alpha-amino acid, for strychnine-sensitive glycine receptors in the rat spinal cord.[Pubmed:7812607]
Br J Pharmacol. 1994 Sep;113(1):165-70.
1. 3-[2'-Phosphonomethyl[1,1'-biphenyl]-3-yl]alanine (PMBA) is a novel glycine antagonist at strychnine-sensitive receptors. The chemical structure of PMBA, possessing both a glycine moiety and a phosphono group, is quite different from that of strychnine. 2. In the spinal motoneurone of newborn rats, glycine (100 microM-1 mM) induced depolarizing responses in a concentration-dependent manner. PMBA effectively inhibited depolarizing responses to glycine and other agonists, such as taurine and beta-alanine. The dose-response curves for glycine were shifted to the right in an almost parallel manner (pA2 value: 5.30 +/- 0.23, n = 5) by PMBA which was about 60 times less potent than strychnine (pA2 value: 7.08 +/- 0.21, n = 5) as a glycine antagonist. 3. PMBA (1-100 microM) did not interact with modulatory glycine sites on N-methyl-D-aspartate (NMDA) receptors, which suggests a high selectivity of PMBA for strychnine-sensitive glycine receptors. At considerably high concentrations (0.1 mM-1 mM), PMBA depressed responses to GABA (pA2 value: 3.57 +/- 0.24, n = 3). 4. PMBA inhibited the binding of [3H]-strychnine to synaptosomes from adult rat spinal cords; the IC50 values of PMBA, glycine and strychnine were 8 +/- 2, 9 +/- 3 and 0.08 +/- 0.04 microM, respectively (n = 5) for [3H]-strychnine (4.8 nM). 5. PMBA is a central excitant drug with relatively high potency and selectivity and should be useful as a pharmacological probe for analysing the mechanisms underlying physiological functions of glycine receptors.