Atraric acid

CAS# 4707-47-5

Atraric acid

2D Structure

Catalog No. BCN5521----Order now to get a substantial discount!

Product Name & Size Price Stock
Atraric acid: 5mg Please Inquire In Stock
Atraric acid: 10mg Please Inquire In Stock
Atraric acid: 20mg Please Inquire Please Inquire
Atraric acid: 50mg Please Inquire Please Inquire
Atraric acid: 100mg Please Inquire Please Inquire
Atraric acid: 200mg Please Inquire Please Inquire
Atraric acid: 500mg Please Inquire Please Inquire
Atraric acid: 1000mg Please Inquire Please Inquire

Quality Control of Atraric acid

3D structure

Package In Stock

Atraric acid

Number of papers citing our products

Chemical Properties of Atraric acid

Cas No. 4707-47-5 SDF Download SDF
PubChem ID 78435 Appearance Powder
Formula C10H12O4 M.Wt 196.2
Type of Compound Phenols Storage Desiccate at -20°C
Solubility Soluble in Chloroform,Dichloromethane,Ethyl Acetate,DMSO,Acetone,etc.
Chemical Name methyl 2,4-dihydroxy-3,6-dimethylbenzoate
SMILES CC1=CC(=C(C(=C1C(=O)OC)O)C)O
Standard InChIKey UUQHKWMIDYRWHH-UHFFFAOYSA-N
General tips For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months.
We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months.
Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it.
About Packaging 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial.
2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial.
3. Try to avoid loss or contamination during the experiment.
Shipping Condition Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request.

Source of Atraric acid

The fruits of Vitis vinifera L.

Biological Activity of Atraric acid

DescriptionAtraric acid derivatives as a new chemical lead structure for novel therapeutic compounds as AR antagonists, that can be used for prophylaxis or treatment of prostatic diseases. It inhibits PTP1B activity in a dose-dependent manner with IC50 values of 51.5 uM, suggest that atraric acid has potential to treat diabetes.
TargetsAndrogen Receptor | PTP1B
In vitro

Computational and functional analysis of the androgen receptor antagonist atraric acid and its derivatives.[Pubmed: 23194423]

Anticancer Agents Med Chem. 2013 Jun;13(5):801-10.

Androgen receptor (AR) antagonists are important compounds for the treatment of prostate cancer (PCa). The Atraric acid (AA), a natural compound, binds to the AR and acts as a specific AR antagonist. Interestingly, Atraric acid represents a novel chemical platform that could serve as a potential basis for new AR antagonists.
METHODS AND RESULTS:
Therefore, one objective of this study was to analyze the chemical/structural requirements for AR antagonism and to obtain predictions of where and how Atraric acid binds to the AR. Further, this study describes the chemical synthesis of 12 Atraric acid derivatives and their analysis using a combination of computational and functional assays. Functional analysis of Atraric acid derivatives indicated that none activated the AR. Both the para-hydroxyl group and the benzene ortho- and the meta-methyl groups of Atraric acid appeared to be essential to antagonize androgen-activated AR activity. Furthermore, extension of the hydrophobic side chain of Atraric acid led to slightly stronger AR antagonism. In silico data suggest that modifications to the basic Atraric acid structure change the hydrogen-bonding network with the AR ligand binding domain (LBD), so that the para-hydroxyl group of Atraric acid forms a hydrogen bond with the LBD, confirming the functional importance of this group for AR antagonism. Moreover, in silico modeling also suggested that the ortho- and meta- methyl groups of Atraric acid interact with hydrophobic residues of the ligand pocket of AR, which might explain their functional importance for antagonism.
CONCLUSIONS:
Thus, these studies identify the chemical groups of Atraric acid that play key roles in allowing the Atraric acid-based chemical platform to act as an AR antagonist.

PTP1B inhibitory secondary metabolites from the Antarctic lichen Lecidella carpathica.[Reference: WebLink]

Mycology An International Journal on Fungal Biology, 2011, 2(1):18-23.

Protein tyrosine phosphatase 1B (PTP1B) is an attractive therapeutic target for diabetes, playing a major role in negative regulation of the insulin signaling pathway. Bioassay-guided investigations of an MeOH extract of the Antarctic lichen, Lecidella carpathica, afforded three PTP1B inhibitory metabolites: hopane-6α,22-diol (1), brialmontin 1 (2), and Atraric acid (3), along with two aromatic metabolites (4 and 5) previously isolated from a different Antarctic lichen species.
METHODS AND RESULTS:
Their structures were determined by analysis of NMR and MS data. Compounds 1–3 inhibited PTP1B activity in a dose-dependent manner with IC50 values of 3.7, 14.0 and 51.5 μM, respectively, and kinetic analyses of PTP1B inhibition by compounds 1 and 2 suggested that these compounds inhibit PTP1B activity in a competitive manner. In addition, 6,22-hopanediol (1) displayed some selectivity toward PTP1B over other protein tyrosine phosphatases, such as TCPTP (IC50 = 8.4 μM), SHP-2 (IC50 > 68 μM), LAR (IC50 > 68 μM), and CD45 (IC50 > 68 μM).

Protocol of Atraric acid

Kinase Assay

The natural compounds atraric acid and N-butylbenzene-sulfonamide as antagonists of the human androgen receptor and inhibitors of prostate cancer cell growth.[Pubmed: 20965230]

The natural compound atraric acid is an antagonist of the human androgen receptor inhibiting cellular invasiveness and prostate cancer cell growth.[Pubmed: 18627423]

J Cell Mol Med. 2009 Aug;13(8B):2210-23.

Extracts from Pygeum africanum are used in the treatment of prostatitis, benign prostatic hyperplasia and prostate cancer (Pca), major health problems of men in Western countries. The ligand-activated human androgen receptor (AR) supports the growth of the prostate gland. Inhibition of human AR by androgen ablation therapy and by applying synthetic anti-androgens is therefore the primary goal in treatment of patients.
METHODS AND RESULTS:
Here, we show that Atraric acid (AA) isolated from bark material of Pygeum africanum has anti-androgenic activity, inhibiting the transactivation mediated by the ligand-activated human AR. This androgen antagonistic activity is receptor specific and does not inhibit the closely related glucocorticoid or progesterone receptors. Mechanistically, AA inhibits nuclear transport of AR. Importantly, AA is able to efficiently repress the growth of both the androgen-dependent LNCaP and also the androgen-independent C4-2 Pca cells but not that of PC3 or CV1 cells lacking AR. In line with this, AA inhibits the expression of the endogenous prostate specific antigen gene in both LNCaP und C4-2 cells. Analyses of cell invasion revealed that AA inhibits the invasiveness of LNCaP cells through extracellular matrix.
CONCLUSIONS:
Thus, this study provides a molecular insight for AA as a natural anti-androgenic compound and may serve as a basis for AA derivatives as a new chemical lead structure for novel therapeutic compounds as AR antagonists, that can be used for prophylaxis or treatment of prostatic diseases.

Mol Cell Endocrinol. 2011 Jan 30;332(1-2):1-8.

Extracts from the plant Pygeum africanum are widely used in the therapy of benign prostate hyperplasia (BPH) and in combinational therapy for prostate cancer, the second leading cause of cancer death and the mostly diagnosed form of cancer in men.
METHODS AND RESULTS:
The androgen receptor (AR) plays a crucial role in the development of the prostate as well as in prostate diseases. Even though the extracts from P. africanum are considered as beneficial for prostate diseases in clinical trials, and some active compounds for treatment of BPH could be identified, compounds responsible for AR inhibition and the molecular mechanism for inhibition of prostatitis need to be identified. Recently, Atraric acid and N-butylbenzene-sulfonamide were isolated from a selective dichlormethane extract of P. africanum as two novel AR antagonistic compounds. The molecular mechanisms of AR inhibition were analyzed and are summarized here.
CONCLUSIONS:
Both compounds are the first known natural, complete and specific AR antagonist.

Atraric acid Dilution Calculator

Concentration (start)
x
Volume (start)
=
Concentration (final)
x
Volume (final)
 
 
 
C1
V1
C2
V2

calculate

Atraric acid Molarity Calculator

Mass
=
Concentration
x
Volume
x
MW*
 
 
 
g/mol

calculate

Preparing Stock Solutions of Atraric acid

1 mg 5 mg 10 mg 20 mg 25 mg
1 mM 5.0968 mL 25.4842 mL 50.9684 mL 101.9368 mL 127.421 mL
5 mM 1.0194 mL 5.0968 mL 10.1937 mL 20.3874 mL 25.4842 mL
10 mM 0.5097 mL 2.5484 mL 5.0968 mL 10.1937 mL 12.7421 mL
50 mM 0.1019 mL 0.5097 mL 1.0194 mL 2.0387 mL 2.5484 mL
100 mM 0.051 mL 0.2548 mL 0.5097 mL 1.0194 mL 1.2742 mL
* Note: If you are in the process of experiment, it's necessary to make the dilution ratios of the samples. The dilution data above is only for reference. Normally, it's can get a better solubility within lower of Concentrations.

Organizitions Citing Our Products recently

 
 
 

Calcutta University

University of Minnesota

University of Maryland School of Medicine

University of Illinois at Chicago

The Ohio State University

University of Zurich

Harvard University

Colorado State University

Auburn University

Yale University

Worcester Polytechnic Institute

Washington State University

Stanford University

University of Leipzig

Universidade da Beira Interior

The Institute of Cancer Research

Heidelberg University

University of Amsterdam

University of Auckland
TsingHua University
TsingHua University
The University of Michigan
The University of Michigan
Miami University
Miami University
DRURY University
DRURY University
Jilin University
Jilin University
Fudan University
Fudan University
Wuhan University
Wuhan University
Sun Yat-sen University
Sun Yat-sen University
Universite de Paris
Universite de Paris
Deemed University
Deemed University
Auckland University
Auckland University
The University of Tokyo
The University of Tokyo
Korea University
Korea University
Featured Products
New Products
 

References on Atraric acid

The natural compound atraric acid is an antagonist of the human androgen receptor inhibiting cellular invasiveness and prostate cancer cell growth.[Pubmed:18627423]

J Cell Mol Med. 2009 Aug;13(8B):2210-23.

Extracts from Pygeum africanum are used in the treatment of prostatitis, benign prostatic hyperplasia and prostate cancer (Pca), major health problems of men in Western countries. The ligand-activated human androgen receptor (AR) supports the growth of the prostate gland. Inhibition of human AR by androgen ablation therapy and by applying synthetic anti-androgens is therefore the primary goal in treatment of patients. Here, we show that Atraric acid (AA) isolated from bark material of Pygeum africanum has anti-androgenic activity, inhibiting the transactivation mediated by the ligand-activated human AR. This androgen antagonistic activity is receptor specific and does not inhibit the closely related glucocorticoid or progesterone receptors. Mechanistically, AA inhibits nuclear transport of AR. Importantly, AA is able to efficiently repress the growth of both the androgen-dependent LNCaP and also the androgen-independent C4-2 Pca cells but not that of PC3 or CV1 cells lacking AR. In line with this, AA inhibits the expression of the endogenous prostate specific antigen gene in both LNCaP und C4-2 cells. Analyses of cell invasion revealed that AA inhibits the invasiveness of LNCaP cells through extracellular matrix. Thus, this study provides a molecular insight for AA as a natural anti-androgenic compound and may serve as a basis for AA derivatives as a new chemical lead structure for novel therapeutic compounds as AR antagonists, that can be used for prophylaxis or treatment of prostatic diseases.

Computational and functional analysis of the androgen receptor antagonist atraric acid and its derivatives.[Pubmed:23194423]

Anticancer Agents Med Chem. 2013 Jun;13(5):801-10.

Androgen receptor (AR) antagonists are important compounds for the treatment of prostate cancer (PCa). The Atraric acid (AA), a natural compound, binds to the AR and acts as a specific AR antagonist. Interestingly, AA represents a novel chemical platform that could serve as a potential basis for new AR antagonists. Therefore, one objective of this study was to analyze the chemical/structural requirements for AR antagonism and to obtain predictions of where and how AA binds to the AR. Further, this study describes the chemical synthesis of 12 AA derivatives and their analysis using a combination of computational and functional assays. Functional analysis of AA derivatives indicated that none activated the AR. Both the para-hydroxyl group and the benzene ortho- and the meta-methyl groups of AA appeared to be essential to antagonize androgen-activated AR activity. Furthermore, extension of the hydrophobic side chain of AA led to slightly stronger AR antagonism. In silico data suggest that modifications to the basic AA structure change the hydrogen-bonding network with the AR ligand binding domain (LBD), so that the para-hydroxyl group of AA forms a hydrogen bond with the LBD, confirming the functional importance of this group for AR antagonism. Moreover, in silico modeling also suggested that the ortho- and meta- methyl groups of AA interact with hydrophobic residues of the ligand pocket of AR, which might explain their functional importance for antagonism. Thus, these studies identify the chemical groups of AA that play key roles in allowing the AA-based chemical platform to act as an AR antagonist.

The natural compounds atraric acid and N-butylbenzene-sulfonamide as antagonists of the human androgen receptor and inhibitors of prostate cancer cell growth.[Pubmed:20965230]

Mol Cell Endocrinol. 2011 Jan 30;332(1-2):1-8.

Extracts from the plant Pygeum africanum are widely used in the therapy of benign prostate hyperplasia (BPH) and in combinational therapy for prostate cancer, the second leading cause of cancer death and the mostly diagnosed form of cancer in men. The androgen receptor (AR) plays a crucial role in the development of the prostate as well as in prostate diseases. Even though the extracts from P. africanum are considered as beneficial for prostate diseases in clinical trials, and some active compounds for treatment of BPH could be identified, compounds responsible for AR inhibition and the molecular mechanism for inhibition of prostatitis need to be identified. Recently, Atraric acid and N-butylbenzene-sulfonamide were isolated from a selective dichlormethane extract of P. africanum as two novel AR antagonistic compounds. The molecular mechanisms of AR inhibition were analyzed and are summarized here. Both compounds are the first known natural, complete and specific AR antagonist.

Keywords:

Atraric acid,4707-47-5,Natural Products, buy Atraric acid , Atraric acid supplier , purchase Atraric acid , Atraric acid cost , Atraric acid manufacturer , order Atraric acid , high purity Atraric acid

Online Inquiry for:

      Fill out the information below

      • Size:Qty: - +

      * Required Fields

                                      Result: