BIX 02188MEK5 inhibitor,potent and selective CAS# 1094614-84-2 |
- BIX 02189
Catalog No.:BCC2549
CAS No.:1094614-85-3
- XMD8-92
Catalog No.:BCC2062
CAS No.:1234480-50-2
- PD184352 (CI-1040)
Catalog No.:BCC1112
CAS No.:212631-79-3
- Cobimetinib
Catalog No.:BCC1491
CAS No.:934660-93-2
- Cobimetinib (R-enantiomer)
Catalog No.:BCC1493
CAS No.:934660-94-3
- Cobimetinib (racemate)
Catalog No.:BCC1492
CAS No.:934662-91-6
Quality Control & MSDS
Number of papers citing our products
Chemical structure
3D structure
Cas No. | 1094614-84-2 | SDF | Download SDF |
PubChem ID | 135398492 | Appearance | Powder |
Formula | C25H24N4O2 | M.Wt | 412.48 |
Type of Compound | N/A | Storage | Desiccate at -20°C |
Solubility | Soluble to 43 mg/mL (104.24 mM) in DMSO | ||
Chemical Name | 3-[N-[3-[(dimethylamino)methyl]phenyl]-C-phenylcarbonimidoyl]-2-hydroxy-1H-indole-6-carboxamide | ||
SMILES | CN(C)CC1=CC(=CC=C1)N=C(C2=CC=CC=C2)C3=C(NC4=C3C=CC(=C4)C(=O)N)O | ||
Standard InChIKey | WGPXKFOFEXJMBD-UHFFFAOYSA-N | ||
Standard InChI | InChI=1S/C25H24N4O2/c1-29(2)15-16-7-6-10-19(13-16)27-23(17-8-4-3-5-9-17)22-20-12-11-18(24(26)30)14-21(20)28-25(22)31/h3-14,28,31H,15H2,1-2H3,(H2,26,30) | ||
General tips | For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months. We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months. Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it. |
||
About Packaging | 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial. 2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial. 3. Try to avoid loss or contamination during the experiment. |
||
Shipping Condition | Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request. |
Description | BIX02188 is a selective inhibitor of MEK5 with an IC50 value of 4.3 nM. | |||||
Targets | MEK5 | ERK5 | TGFβR1 | |||
IC50 | 4.3 nM | 810 nM | 1.8 μM |
BIX 02188 Dilution Calculator
BIX 02188 Molarity Calculator
1 mg | 5 mg | 10 mg | 20 mg | 25 mg | |
1 mM | 2.4244 mL | 12.1218 mL | 24.2436 mL | 48.4872 mL | 60.609 mL |
5 mM | 0.4849 mL | 2.4244 mL | 4.8487 mL | 9.6974 mL | 12.1218 mL |
10 mM | 0.2424 mL | 1.2122 mL | 2.4244 mL | 4.8487 mL | 6.0609 mL |
50 mM | 0.0485 mL | 0.2424 mL | 0.4849 mL | 0.9697 mL | 1.2122 mL |
100 mM | 0.0242 mL | 0.1212 mL | 0.2424 mL | 0.4849 mL | 0.6061 mL |
* Note: If you are in the process of experiment, it's necessary to make the dilution ratios of the samples. The dilution data above is only for reference. Normally, it's can get a better solubility within lower of Concentrations. |
Calcutta University
University of Minnesota
University of Maryland School of Medicine
University of Illinois at Chicago
The Ohio State University
University of Zurich
Harvard University
Colorado State University
Auburn University
Yale University
Worcester Polytechnic Institute
Washington State University
Stanford University
University of Leipzig
Universidade da Beira Interior
The Institute of Cancer Research
Heidelberg University
University of Amsterdam
University of Auckland
TsingHua University
The University of Michigan
Miami University
DRURY University
Jilin University
Fudan University
Wuhan University
Sun Yat-sen University
Universite de Paris
Deemed University
Auckland University
The University of Tokyo
Korea University
BIX 02188 is a selective inhibitor of MEK5 with IC50 value of 4.3 nM 1.
BIX 02188 belongs to the indolinone kinase inhibitor series. It selectively inhibited the catalytic activity of MEK5 but not other closely related kinases such as MEK1, MEK2, ERK2 and JNK2. BIX 02188 also inhibited ERK5 with IC50 value of 810 nM. In HeLa cells, treatment of BIX 02188 inhibited the phosphorylation of ERK5 but not ERK1/2. Besides that, BIX 02188 prevented the transcription of the downstream substrate MEF2C in HeLa and HEK293 cells. When tested with a panel of 79 kinases, BIX 02188 showed some degree of inhibition of the kinases CSF1R, KIT and LCK with IC50 values of 280 nM, 550 nM and 390 nM, respectively 1.
References:
1. Tatake R J, O’Neill M M, Kennedy C A, et al. Identification of pharmacological inhibitors of the MEK5/ERK5 pathway. Biochemical and biophysical research communications, 2008, 377(1): 120-125.
- Fmoc-His(Trt)-OPfp
Catalog No.:BCC3502
CAS No.:109434-24-4
- Fmoc-Orn(Boc)-OH
Catalog No.:BCC3533
CAS No.:109425-55-0
- Fmoc-His(Trt)-OH
Catalog No.:BCC3501
CAS No.:109425-51-6
- SCH-1473759
Catalog No.:BCC1934
CAS No.:1094069-99-4
- CYM 5442 hydrochloride
Catalog No.:BCC7722
CAS No.:1094042-01-9
- gamma-secretase modulator 2
Catalog No.:BCC1584
CAS No.:1093978-89-2
- VU 0155041
Catalog No.:BCC7615
CAS No.:1093757-42-6
- SRT2104 (GSK2245840)
Catalog No.:BCC1950
CAS No.:1093403-33-8
- Vibralactone B
Catalog No.:BCN6748
CAS No.:1093230-95-5
- LKB1 (AAK1 dual inhibitor)
Catalog No.:BCC1705
CAS No.:1093222-27-5
- 3-Hydroxy-4,15-dinor-1(5)-xanthen-12,8-olide
Catalog No.:BCN1625
CAS No.:1093207-99-8
- HNGF6A
Catalog No.:BCC8021
CAS No.:1093111-54-6
- BIX 02189
Catalog No.:BCC2549
CAS No.:1094614-85-3
- 3'-Methyl-4-O-methylhelichrysetin
Catalog No.:BCN4062
CAS No.:109471-13-8
- JNJ-31020028
Catalog No.:BCC5516
CAS No.:1094873-14-9
- PF-04449913
Catalog No.:BCC5154
CAS No.:1095173-27-5
- Rac1 Inhibitor W56
Catalog No.:BCC5886
CAS No.:1095179-01-3
- ARQ 621
Catalog No.:BCC6534
CAS No.:1095253-39-6
- CCT137690
Catalog No.:BCC2188
CAS No.:1095382-05-0
- RX 821002 hydrochloride
Catalog No.:BCC7021
CAS No.:109544-45-8
- Tacrolimus monohydrate
Catalog No.:BCC5284
CAS No.:109581-93-3
- Pinocembrin 7-acetate
Catalog No.:BCN5887
CAS No.:109592-60-1
- Topazolin
Catalog No.:BCN6833
CAS No.:109605-79-0
- Neocryptotanshinone
Catalog No.:BCN3158
CAS No.:109664-02-0
TSA and BIX-01294 Induced Normal DNA and Histone Methylation and Increased Protein Expression in Porcine Somatic Cell Nuclear Transfer Embryos.[Pubmed:28114389]
PLoS One. 2017 Jan 23;12(1):e0169092.
The poor efficiency of animal cloning is mainly attributed to the defects in epigenetic reprogramming of donor cells' chromatins during early embryonic development. Previous studies indicated that inhibition of histone deacetylases or methyltransferase, such as G9A, using Trichostatin A (TSA) or BIX-01294 significantly enhanced the developmental efficiency of porcine somatic cell nuclear transfer (SCNT) embryos. However, potential mechanisms underlying the improved early developmental competence of SCNT embryos exposed to TSA and BIX-01294 are largely unclear. Here we found that 50 nM TSA or 1.0 muM BIX-01294 treatment alone for 24 h significantly elevated the blastocyst rate (P < 0.05), while further improvement was not observed under combined treatment condition. Furthermore, co-treatment or TSA treatment alone significantly reduced H3K9me2 level at the 4-cell stage, which is comparable with that in in vivo and in vitro fertilized counterparts. However, only co-treatment significantly decreased the levels of 5mC and H3K9me2 in trophectoderm lineage and subsequently increased the expression of OCT4 and CDX2 associated with ICM and TE lineage differentiation. Altogether, these results demonstrate that co-treatment of TSA and BIX-01294 enhances the early developmental competence of porcine SCNT embryos via improvements in epigenetic status and protein expression.
Beneficial effects of diazepin-quinazolin-amine derivative (BIX-01294) on preimplantation development and molecular characteristics of cloned mouse embryos.[Pubmed:27477633]
Reprod Fertil Dev. 2017 Jun;29(6):1260-1269.
Somatic cell nuclear transfer is frequently associated with abnormal epigenetic modifications that may lead to the developmental failure of cloned embryos. BIX-01294 (a diazepine-quinazoline-amine derivative) is a specific inhibitor of the histone methyltransferase G9a. The aim of the present study was to investigate the effects of BIX-01294 on development, dimethylation of histone H3 at lysine 9 (H3K9), DNA methylation and the expression of imprinted genes in cloned mouse preimplantation embryos. There were no significant differences in blastocyst rates of cloned embryos treated with or without 0.1muM BIX-01294. Relative to clone embryos treated without 0.1muM BIX-01294, exposure of embryos to BIX-01294 decreased histone H3K9 dimethylation and DNA methylation in cloned embryos to levels that were similar to those of in vivo-fertilised embryos at the 2-cell and blastocyst stages. Cloned embryos had lower expression of octamer-binding transcription factor 4 (Oct4) and small nuclear ribonucleoprotein N (Snrpn), but higher expression of imprinted maternally expressed transcript (non-protein coding) (H19) and growth factor receptor-bound protein 10 (Grb10) compared with in vivo-fertilised counterparts. The addition of 0.1muM BIX-01294 to the activation and culture medium resulted in lower H19 expression and higher cyclin dependent kinase inhibitor 1C (Cdkn1c) and delta-like 1 homolog (Dlk1) expression, but had no effect on the expression of Oct4, Snrpn and Grb10. The loss of methylation at the Grb10 cytosine-phosphorous-guanine (CpG) islands in cloned embryos was partially corrected by BIX-01294. These results indicate that BIX-01294 treatment of cloned embryos has beneficial effects in terms of correcting abnormal epigenetic modifications, but not on preimplantation development.
Effect of BIX-01294 on H3K9me2 levels and the imprinted gene Snrpn in mouse embryonic fibroblast cells.[Pubmed:26285804]
Biosci Rep. 2015 Aug 18;35(5). pii: BSR20150064.
Histone H3 lysine 9 dimethylation (H3K9me2) hypermethylation is thought to be a major influential factor in cellular reprogramming, such as somatic cell nuclear transfer (SCNT) and induction of pluripotent stem cells (iPSCs). The diazepin-quinazolin-amine derivative (BIX-01294) specifically inhibits the activity of histone methyltransferase EHMT2 (euchromatic histone-lysine N-methyltransferase 2) and reduces H3K9me2 levels in cells. The imprinted gene small nuclear ribonucleoprotein N (Snrpn) is of particular interest because of its important biological functions. The objective of the present study was to investigate the effect of BIX-01294 on H3K9me2 levels and changes in Snrpn DNA methylation and histone H3K9me2 in mouse embryonic fibroblasts (MEFs). Results showed that 1.3 muM BIX-01294 markedly reduced global levels of H3K9me2 with almost no cellular toxicity. There was a significant decrease in H3K9me2 in promoter regions of the Snrpn gene after BIX-01294 treatment. A significant increase in methylation of the Snrpn differentially methylated region 1 (DMR1) and slightly decreased transcript levels of Snrpn were found in BIX-01294-treated MEFs. These results suggest that BIX-01294 may reduce global levels of H3K9me2 and affect epigenetic modifications of Snrpn in MEFs.
BIX-01294 increases pig cloning efficiency by improving epigenetic reprogramming of somatic cell nuclei.[Pubmed:26604326]
Reproduction. 2016 Jan;151(1):39-49.
Accumulating evidence suggests that faulty epigenetic reprogramming leads to the abnormal development of cloned embryos and results in the low success rates observed in all mammals produced through somatic cell nuclear transfer (SCNT). The aberrant methylation status of H3K9me and H3K9me2 has been reported in cloned mouse embryos. To explore the role of H3K9me2 and H3K9me in the porcine somatic cell nuclear reprogramming, BIX-01294, known as a specific inhibitor of G9A (histone-lysine methyltransferase of H3K9), was used to treat the nuclear-transferred (NT) oocytes for 14-16 h after activation. The results showed that the developmental competence of porcine SCNT embryos was significantly enhanced both in vitro (blastocyst rate 16.4% vs 23.2%, P<0.05) and in vivo (cloning rate 1.59% vs 2.96%) after 50 nm BIX-01294 treatment. BIX-01294 treatment significantly decreased the levels of H3K9me2 and H3K9me at the 2- and 4-cell stages, which are associated with embryo genetic activation, and increased the transcriptional expression of the pluripotency genes SOX2, NANOG and OCT4 in cloned blastocysts. Furthermore, the histone acetylation levels of H3K9, H4K8 and H4K12 in cloned embryos were decreased after BIX-01294 treatment. However, co-treatment of activated NT oocytes with BIX-01294 and Scriptaid rescued donor nuclear chromatin from decreased histone acetylation of H4K8 that resulted from exposure to BIX-01294 only and consequently improved the preimplantation development of SCNT embryos (blastocyst formation rates of 23.7% vs 21.5%). These results indicated that treatment with BIX-01294 enhanced the developmental competence of porcine SCNT embryos through improvements in epigenetic reprogramming and gene expression.