HNGF6AHumanin analog; increases insulin sensitivity CAS# 1093111-54-6 |
Quality Control & MSDS
Number of papers citing our products
Chemical structure
3D structure
Cas No. | 1093111-54-6 | SDF | Download SDF |
PubChem ID | 90489015 | Appearance | Powder |
Formula | C112H198N34O31S2 | M.Wt | 2581.13 |
Type of Compound | N/A | Storage | Desiccate at -20°C |
Solubility | Soluble to 1 mg/ml in water | ||
Sequence | MAPRGASCLLLLTGEIDLPVKRRA | ||
SMILES | CCC(C)C(C(=O)NC(CC(=O)O)C(=O)NC(CC(C)C)C(=O)N1CCCC1C(=O)NC(C(C)C)C(=O)NC(CCCCN)C(=O)NC(CCCNC(=N)N)C(=O)NC(CCCNC(=N)N)C(=O)NC(C)C(=O)O)NC(=O)C(CCC(=O)O)NC(=O)CNC(=O)C(C(C)O)NC(=O)C(CC(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC(C)C)NC(=O)C(CS)NC(=O)C(CO)NC(=O)C(C)NC(=O)CNC(=O)C(CCCNC(=N)N)NC(=O)C2CCCN2C(=O)C(C)NC(=O)C(CCSC)N | ||
Standard InChIKey | OQIJKOVTOUEJGW-VFDWMCQBSA-N | ||
Standard InChI | InChI=1S/C112H198N34O31S2/c1-20-60(14)86(106(173)138-75(49-84(153)154)98(165)139-76(48-58(10)11)108(175)146-42-27-33-80(146)103(170)142-85(59(12)13)105(172)133-67(28-21-22-37-113)92(159)131-69(31-25-40-123-112(119)120)93(160)130-68(30-24-39-122-111(117)118)91(158)128-63(17)109(176)177)143-94(161)70(34-35-83(151)152)129-82(150)51-125-104(171)87(64(18)148)144-99(166)74(47-57(8)9)136-96(163)72(45-55(4)5)134-95(162)71(44-54(2)3)135-97(164)73(46-56(6)7)137-101(168)78(53-178)141-100(167)77(52-147)140-88(155)61(15)126-81(149)50-124-90(157)66(29-23-38-121-110(115)116)132-102(169)79-32-26-41-145(79)107(174)62(16)127-89(156)65(114)36-43-179-19/h54-80,85-87,147-148,178H,20-53,113-114H2,1-19H3,(H,124,157)(H,125,171)(H,126,149)(H,127,156)(H,128,158)(H,129,150)(H,130,160)(H,131,159)(H,132,169)(H,133,172)(H,134,162)(H,135,164)(H,136,163)(H,137,168)(H,138,173)(H,139,165)(H,140,155)(H,141,167)(H,142,170)(H,143,161)(H,144,166)(H,151,152)(H,153,154)(H,176,177)(H4,115,116,121)(H4,117,118,122)(H4,119,120,123)/t60-,61-,62-,63-,64+,65-,66-,67-,68-,69-,70-,71-,72-,73-,74-,75-,76-,77-,78-,79-,80-,85-,86-,87-/m0/s1 | ||
General tips | For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months. We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months. Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it. |
||
About Packaging | 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial. 2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial. 3. Try to avoid loss or contamination during the experiment. |
||
Shipping Condition | Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request. |
Description | Humanin analog; increases glucose stimulated insulin secretion and glucose metabolism in vivo and in vitro. Also enhances glucose sensing in βTC3 cells and lowers blood glucose in Zucker diabetic fatty rats. Prevents endothelial dysfunction and delays progression of atherosclerosis in vivo. |
HNGF6A Dilution Calculator
HNGF6A Molarity Calculator
Calcutta University
University of Minnesota
University of Maryland School of Medicine
University of Illinois at Chicago
The Ohio State University
University of Zurich
Harvard University
Colorado State University
Auburn University
Yale University
Worcester Polytechnic Institute
Washington State University
Stanford University
University of Leipzig
Universidade da Beira Interior
The Institute of Cancer Research
Heidelberg University
University of Amsterdam
University of Auckland
TsingHua University
The University of Michigan
Miami University
DRURY University
Jilin University
Fudan University
Wuhan University
Sun Yat-sen University
Universite de Paris
Deemed University
Auckland University
The University of Tokyo
Korea University
- B-Raf inhibitor 1
Catalog No.:BCC4182
CAS No.:1093100-40-3
- PLpro inhibitor
Catalog No.:BCC5302
CAS No.:1093070-14-4
- Angelol M
Catalog No.:BCN8271
CAS No.:1092952-64-1
- 7,2',4'-Trihydroxy-5-methoxy-3-phenylcoumarin
Catalog No.:BCN1626
CAS No.:1092952-62-9
- Ruxolitinib phosphate
Catalog No.:BCC1912
CAS No.:1092939-17-7
- Ruxolitinib sulfate
Catalog No.:BCC1913
CAS No.:1092939-16-6
- PP121
Catalog No.:BCC4980
CAS No.:1092788-83-4
- IT1t dihydrochloride
Catalog No.:BCC6234
CAS No.:1092776-63-0
- WAY 100635 hydrochloride
Catalog No.:BCC5061
CAS No.:146714-97-8
- (3S,4R)-Tofacitinib
Catalog No.:BCC4267
CAS No.:1092578-48-7
- (3S,4S)-Tofacitinib
Catalog No.:BCC4052
CAS No.:1092578-47-6
- (3R,4S)-Tofacitinib
Catalog No.:BCC4268
CAS No.:1092578-46-5
- 3-Hydroxy-4,15-dinor-1(5)-xanthen-12,8-olide
Catalog No.:BCN1625
CAS No.:1093207-99-8
- LKB1 (AAK1 dual inhibitor)
Catalog No.:BCC1705
CAS No.:1093222-27-5
- Vibralactone B
Catalog No.:BCN6748
CAS No.:1093230-95-5
- SRT2104 (GSK2245840)
Catalog No.:BCC1950
CAS No.:1093403-33-8
- VU 0155041
Catalog No.:BCC7615
CAS No.:1093757-42-6
- gamma-secretase modulator 2
Catalog No.:BCC1584
CAS No.:1093978-89-2
- CYM 5442 hydrochloride
Catalog No.:BCC7722
CAS No.:1094042-01-9
- SCH-1473759
Catalog No.:BCC1934
CAS No.:1094069-99-4
- Fmoc-His(Trt)-OH
Catalog No.:BCC3501
CAS No.:109425-51-6
- Fmoc-Orn(Boc)-OH
Catalog No.:BCC3533
CAS No.:109425-55-0
- Fmoc-His(Trt)-OPfp
Catalog No.:BCC3502
CAS No.:109434-24-4
- BIX 02188
Catalog No.:BCC2550
CAS No.:1094614-84-2
Potent humanin analog increases glucose-stimulated insulin secretion through enhanced metabolism in the beta cell.[Pubmed:23995290]
FASEB J. 2013 Dec;27(12):4890-8.
Humanin (HN) is a 24-aa polypeptide that offers protection from Alzheimer's disease and myocardial infarction, increases insulin sensitivity, improves survival of beta cells, and delays onset of diabetes. Here we examined the acute effects of HN on insulin secretion and potential mechanisms through which they are mediated. Effects of a potent HN analog, HNGF6A, on glucose-stimulated insulin secretion (GSIS) were assessed in vivo and in isolated pancreatic islets and cultured murine beta cell line (betaTC3) in vitro. Sprague-Dawley rats (3 mo old) that received HNGF6A required a significantly higher glucose infusion rate and demonstrated higher insulin levels during hyperglycemic clamps compared to saline controls. In vitro, compared to scrambled peptide controls, HNGF6A increased GSIS in isolated islets from both normal and diabetic mice as well as in betaTC3 cells. Effects of HNGF6A on GSIS were dose dependent, K-ATP channel independent, and associated with enhanced glucose metabolism. These findings demonstrate that HNGF6A increases GSIS in whole animals, from isolated islets and from cells in culture, which suggests a direct effect on the beta cell. The glucose-dependent effects on insulin secretion along with the established effects on insulin action suggest potential for HN and its analogs in the treatment of diabetes.
Pharmacokinetics and tissue distribution of humanin and its analogues in male rodents.[Pubmed:23836030]
Endocrinology. 2013 Oct;154(10):3739-44.
Humanin (HN) is a novel 24-amino acid mitochondrial-derived peptide that has demonstrated diverse cytoprotective effects, including an emerging role in diabetes. The purpose of this study was to examine the pharmacokinetics of humanin analogues, which show great potential as therapeutic agents (HNG and the non-IGFBP-3 binding, HNGF6A). 11-week-old male IGFBP-3(-/-) and wild type (WT) mice were divided into 3 groups: WT mice treated with HNG, WT mice treated with HNGF6A, and IGFBP-3(-/-) mice treated with HNG. Plasma was obtained from mice following ip injection with HN analogues, and HN levels were measured with ELISA. WT mice treated with HNGF6A and IGFBP-3(-/-) mice treated with HNG displayed a longer half-life of HN compared with WT mice treated with HNG. Following HNG injection, both IGF-1 and IGFBP-3 levels decreased over time. Adult male Sprague Dawley rats were also ip injected with HNG, and HN levels were measured in various tissues (plasma, liver, heart, and brain) by ELISA. The half-life of HN was found to be longer in rats compared with mice. In rats, HN levels were found to be highest in plasma, present in liver, and undetectable in brain or heart. The current study provides evidence of HN and IGFBP-3 association in the circulation and suggests that native HN may modulate the distribution of IGF-1 and IGFBP-3. The results also demonstrate varying kinetic profiles of HN analogues and interspecies variation in rodents. Sustainable levels of circulating HN measured in plasma underline the potential value of HN analogues as a new therapeutic intervention in the treatment of diabetes.
Humanin preserves endothelial function and prevents atherosclerotic plaque progression in hypercholesterolemic ApoE deficient mice.[Pubmed:21763658]
Atherosclerosis. 2011 Nov;219(1):65-73.
OBJECTIVE: Humanin (HN) is a cytoprotective peptide derived from endogenous mitochondria, expressed in the endothelial layer of human vessels, but its role in atherogenesis in vivo is not known. In vitro study, however, HN reduced oxidized low-density lipoprotein induced formation of reactive oxygen species and apoptosis. The present study tested the hypothesis that long term treatment with HN will have a protective role against endothelial dysfunction and progression of atherosclerosis in vivo. METHODS AND RESULTS: Daily intraperitonial injection of the HN analogue HNGF6A for 16 weeks prevented endothelial dysfunction and decreased atherosclerotic plaque size in the proximal aorta of ApoE-deficient mice fed on a high cholesterol diet, without showing direct vasoactive effects or cholesterol-reducing effects. HN was expressed in the endothelial layer on the aortic plaques. HNGF6A treatment reduced apoptosis and nitrotyrosine immunoreactivity in the aortic plaques without affecting the systemic cytokine profile. HNGF6A also preserved expression of endothelial nitric oxide synthase in aorta. CONCLUSIONS: HN may have a protective effect on endothelial function and progression of atherosclerosis by modulating oxidative stress and apoptosis in the developing plaque.
Humanin: a novel central regulator of peripheral insulin action.[Pubmed:19623253]
PLoS One. 2009 Jul 22;4(7):e6334.
BACKGROUND: Decline in insulin action is a metabolic feature of aging and is involved in the development of age-related diseases including Type 2 Diabetes Mellitus (T2DM) and Alzheimer's disease (AD). A novel mitochondria-associated peptide, Humanin (HN), has a neuroprotective role against AD-related neurotoxicity. Considering the association between insulin resistance and AD, we investigated if HN influences insulin sensitivity. METHODS AND FINDINGS: Using state of the art clamp technology, we examined the role of central and peripheral HN on insulin action. Continuous infusion of HN intra-cerebro-ventricularly significantly improved overall insulin sensitivity. The central effects of HN on insulin action were associated with activation of hypothalamic STAT-3 signaling; effects that were negated by co-inhibition of hypothalamic STAT-3. Peripheral intravenous infusions of novel and potent HN derivatives reproduced the insulin-sensitizing effects of central HN. Inhibition of hypothalamic STAT-3 completely negated the effects of IV HN analog on liver, suggesting that the hepatic actions of HN are centrally mediated. This is consistent with the lack of a direct effect of HN on primary hepatocytes. Furthermore, single treatment with a highly-potent HN analog significantly lowered blood glucose in Zucker diabetic fatty rats. Based upon the link of HN with two age-related diseases, we examined if there were age associated changes in HN levels. Indeed, the amount of detectable HN in hypothalamus, skeletal muscle, and cortex was decreased with age in rodents, and circulating levels of HN were decreased with age in humans and mice. CONCLUSIONS: We conclude that the decline in HN with age could play a role in the pathogenesis of age-related diseases including AD and T2DM. HN represents a novel link between T2DM and neurodegeneration and along with its analogues offers a potential therapeutic tool to improve insulin action and treat T2DM.