BYK 49187Potent PARP-1/PARP-2 inhibitor CAS# 163120-31-8 |
2D Structure
- MK-4827
Catalog No.:BCC1761
CAS No.:1038915-60-4
- BMN-673 8R,9S
Catalog No.:BCC1422
CAS No.:1207456-00-5
- XAV-939
Catalog No.:BCC1120
CAS No.:284028-89-3
- PJ34
Catalog No.:BCC1865
CAS No.:344458-19-1
- ABT-888 (Veliparib)
Catalog No.:BCC1267
CAS No.:912444-00-9
Quality Control & MSDS
3D structure
Package In Stock
Number of papers citing our products
Cas No. | 163120-31-8 | SDF | Download SDF |
PubChem ID | 15285131 | Appearance | Powder |
Formula | C19H21N5O | M.Wt | 335.4 |
Type of Compound | N/A | Storage | Desiccate at -20°C |
Solubility | Soluble to 10 mM in DMSO and to 50 mM in ethanol | ||
SMILES | CC1=C(N=CN1)C2CCN(CC2)C3=NC4=CC=CC5=C4N3CCC5=O | ||
Standard InChIKey | YKJJROIKVYSPDH-UHFFFAOYSA-N | ||
Standard InChI | InChI=1S/C19H21N5O/c1-12-17(21-11-20-12)13-5-8-23(9-6-13)19-22-15-4-2-3-14-16(25)7-10-24(19)18(14)15/h2-4,11,13H,5-10H2,1H3,(H,20,21) | ||
General tips | For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months. We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months. Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it. |
||
About Packaging | 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial. 2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial. 3. Try to avoid loss or contamination during the experiment. |
||
Shipping Condition | Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request. |
Description | PARP-1 and PARP-2 inhibitor (pIC50 values are 8.36 and 7.50 for cell-free recombinant PARP-1 and murine PARP-2 respectively). Displays potent inhibitory activity against human PARP-1 in cell-free and cellular assays in vitro; reduces myocardial infarct size in vivo. |
BYK 49187 Dilution Calculator
BYK 49187 Molarity Calculator
1 mg | 5 mg | 10 mg | 20 mg | 25 mg | |
1 mM | 2.9815 mL | 14.9076 mL | 29.8151 mL | 59.6303 mL | 74.5379 mL |
5 mM | 0.5963 mL | 2.9815 mL | 5.963 mL | 11.9261 mL | 14.9076 mL |
10 mM | 0.2982 mL | 1.4908 mL | 2.9815 mL | 5.963 mL | 7.4538 mL |
50 mM | 0.0596 mL | 0.2982 mL | 0.5963 mL | 1.1926 mL | 1.4908 mL |
100 mM | 0.0298 mL | 0.1491 mL | 0.2982 mL | 0.5963 mL | 0.7454 mL |
* Note: If you are in the process of experiment, it's necessary to make the dilution ratios of the samples. The dilution data above is only for reference. Normally, it's can get a better solubility within lower of Concentrations. |
Calcutta University
University of Minnesota
University of Maryland School of Medicine
University of Illinois at Chicago
The Ohio State University
University of Zurich
Harvard University
Colorado State University
Auburn University
Yale University
Worcester Polytechnic Institute
Washington State University
Stanford University
University of Leipzig
Universidade da Beira Interior
The Institute of Cancer Research
Heidelberg University
University of Amsterdam
University of Auckland
TsingHua University
The University of Michigan
Miami University
DRURY University
Jilin University
Fudan University
Wuhan University
Sun Yat-sen University
Universite de Paris
Deemed University
Auckland University
The University of Tokyo
Korea University
BYK 49187 is a potent inhibitor of PARP-1 and PARP-2 with pIC50 value pIC50 values of 8.36 and 7.50 for cell-free recombinant PARP-1 and murine PARP-2 respectively [1].
Poly (ADP-ribose) polymerase (PARP) is a family of proteins involved in a number of cellular processes involving mainly DNA repair and programmed cell death [1].
BYK 49187 is a potent inhibitor of human PARP and displays no selectivity for PARP1/2 [1]. PAR formation in A549, C4I, and H9c2 cells was inhibited by BYK49187 with pIC50 values of 7.80, 7.02, and 7.65, respectively. BYK 49187 displays potent inhibitory activity against human PARP-1 in cell-free and cellular assays in vitro [1].
In the test of effect of BYK 49187 on myocardial infarct size in the rat, intravenous administration of the lower dose of BYK 49187 was nearly ineffective (only 6% reduction in infarct size), whereas the higher dose (3 mg/kg followed by 3 mg/kg/h) caused a significant reduction in infarct size of 22% compared with vehicle. Blood samples of rats treated with 3 mg/kg i.v. BYK49187 significantly inhibited PARP-1 by 80% compared with sham operation [1].
References:
[1]. Eltze T, Boer R, Wagner T, et al. Imidazoquinolinone, Imidazopyridine, and Isoquinolindione Derivatives as Novel and Potent Inhibitors of the Poly(ADP-ribose) Polymerase (PARP): A Comparison with Standard PARP Inhibitors. Mol Pharmacol, 2008, 74 (6):1587–1598.
- N-Benzylmaleimide
Catalog No.:BCC9095
CAS No.:1631-26-1
- Albatrelin G
Catalog No.:BCN7596
CAS No.:1630970-05-6
- 17-Hydroxy-18-dehydroneogrifolin
Catalog No.:BCN7633
CAS No.:1630936-42-3
- Huperzine C
Catalog No.:BCN2489
CAS No.:163089-71-2
- (1S,2S)-1-Amino-2-Indanol
Catalog No.:BCC8386
CAS No.:163061-74-3
- (1R,2R)-1-Amino-2-indanol
Catalog No.:BCC8380
CAS No.:163061-73-2
- Lup-20(29)-ene-3bate,23-diol
Catalog No.:BCN4080
CAS No.:163060-07-9
- Cimicifugoside H1
Catalog No.:BCN7950
CAS No.:163046-73-9
- 2-Cl-IB-MECA
Catalog No.:BCC6938
CAS No.:163042-96-4
- 3-O-(2-Aminoethyl)-25-hydroxyvitamin D3
Catalog No.:BCC1309
CAS No.:163018-26-6
- K-Ras G12C-IN-3
Catalog No.:BCC5540
CAS No.:1629268-19-4
- K-Ras G12C-IN-2
Catalog No.:BCC5539
CAS No.:1629267-75-9
- Cannabisin F
Catalog No.:BCN4696
CAS No.:163136-19-4
- Chromanol 293B
Catalog No.:BCC7055
CAS No.:163163-23-3
- (-)-[3R,4S]-Chromanol 293B
Catalog No.:BCC7080
CAS No.:163163-24-4
- Cimifugin 4'-O-beta-D-glucopyranoside
Catalog No.:BCN7853
CAS No.:1632110-81-6
- Ezetimibe
Catalog No.:BCN2180
CAS No.:163222-33-1
- 680C91
Catalog No.:BCC6158
CAS No.:163239-22-3
- Clevudine
Catalog No.:BCC4770
CAS No.:163252-36-6
- Sitafloxacin Hydrate
Catalog No.:BCC4959
CAS No.:163253-35-8
- Bethoxazin
Catalog No.:BCC5471
CAS No.:163269-30-5
- FIIN-2
Catalog No.:BCC3974
CAS No.:1633044-56-0
- Stachybotrylactam
Catalog No.:BCN6967
CAS No.:163391-76-2
- 2',4'-Di-O-(E-p-coumaroyl)afzelin
Catalog No.:BCN6512
CAS No.:163434-73-9
5-Benzamidoisoquinolin-1-ones and 5-(omega-carboxyalkyl)isoquinolin-1-ones as isoform-selective inhibitors of poly(ADP-ribose) polymerase 2 (PARP-2).[Pubmed:21417348]
J Med Chem. 2011 Apr 14;54(7):2049-59.
PARP-2 is a member of the poly(ADP-ribose) polymerase family, with some activities similar to those of PARP-1 but with other distinct roles. Two series of isoquinolin-1-ones were designed, synthesized, and evaluated as selective inhibitors of PARP-2, using the structures of the catalytic sites of the isoforms. A new efficient synthesis of 5-aminoisoquinolin-1-one was developed, and acylation with acyl chlorides gave 5-acylaminoisoquinolin-1-ones. By examination of isoquinolin-1-ones with carboxylates tethered to the 5-position, Heck coupling of 5-iodoisoquinolin-1-one furnished the 5-CH horizontal lineCHCO(2)H compound for reduction to the 5-propanoic acid. Alkylation of 5-aminoisoquinolin-1-one under mildly basic conditions, followed by hydrolysis, gave 5-(carboxymethylamino)isoquinolin-1-one, whereas it was alkylated at 2-N with methyl propenoate and strong base. Compounds were assayed in vitro for inhibition of PARP-1 and PARP-2, using FlashPlate and solution-phase assays, respectively. The 5-benzamidoisoquinolin-1-ones were more selective for inhibition of PARP-2, whereas the 5-(omega-carboxyalkyl)isoquinolin-1-ones were less so. 5-Benzamidoisoquinolin-1-one is the most PARP-2-selective compound (IC(50(PARP-1))/IC(50(PARP-2)) = 9.3) to date, in a comparative study.
Imidazoquinolinone, imidazopyridine, and isoquinolindione derivatives as novel and potent inhibitors of the poly(ADP-ribose) polymerase (PARP): a comparison with standard PARP inhibitors.[Pubmed:18809672]
Mol Pharmacol. 2008 Dec;74(6):1587-98.
We have identified three novel structures for inhibitors of the poly(ADP-ribose) polymerase (PARP), a nuclear enzyme activated by strand breaks in DNA and implicated in DNA repair, apoptosis, organ dysfunction or necrosis. 2-[4-(5-Methyl-1H-imidazol-4-yl)-piperidin-1-yl]-4,5-dihydro-imidazo[4,5,1-i,j]qu inolin-6-one (BYK49187), 2-(4-pyridin-2-yl-phenyl)-4,5-dihydro-imidazo[4,5,1-i,j]quinolin-6-one (BYK236864), 6-chloro-8-hydroxy-2,3-dimethyl-imidazo-[1,2-alpha]-pyridine (BYK20370), and 4-(1-methyl-1H-pyrrol-2-ylmethylene)-4H-isoquinolin-1,3-dione (BYK204165) inhibited cell-free recombinant human PARP-1 with pIC(50) values of 8.36, 7.81, 6.40, and 7.35 (pK(i) 7.97, 7.43, 5.90, and 7.05), and murine PARP-2 with pIC(50) values of 7.50, 7.55, 5.71, and 5.38, respectively. BYK49187, BYK236864, and BYK20370 displayed no selectivity for PARP-1/2, whereas BYK204165 displayed 100-fold selectivity for PARP-1. The IC(50) values for inhibition of poly(ADP-ribose) synthesis in human lung epithelial A549 and cervical carcinoma C4I cells as well in rat cardiac myoblast H9c2 cells after PARP activation by H(2)O(2) were highly significantly correlated with those at cell-free PARP-1 (r(2) = 0.89-0.96, P < 0.001) but less with those at PARP-2 (r(2) = 0.78-0.84, P < 0.01). The infarct size caused by coronary artery occlusion and reperfusion in the anesthetized rat was reduced by 22% (P < 0.05) by treatment with BYK49187 (3 mg/kg i.v. bolus and 3 mg/kg/h i.v. during 2-h reperfusion), whereas the weaker PARP inhibitors, BYK236864 and BYK20370, were not cardioprotective. In conclusion, the imidazoquinolinone BYK49187 is a potent inhibitor of human PARP-1 activity in cell-free and cellular assays in vitro and reduces myocardial infarct size in vivo. The isoquinolindione BYK204165 was found to be 100-fold more selective for PARP-1. Thus, both compounds might be novel and valuable tools for investigating PARP-1-mediated effects.