CitreoroseinCAS# 481-73-2 |
Quality Control & MSDS
Number of papers citing our products
Chemical structure
3D structure
Cas No. | 481-73-2 | SDF | Download SDF |
PubChem ID | 361512 | Appearance | Yellow powder |
Formula | C15H10O6 | M.Wt | 286.2 |
Type of Compound | Anthraquinones | Storage | Desiccate at -20°C |
Solubility | Soluble in Chloroform,Dichloromethane,Ethyl Acetate,DMSO,Acetone,etc. | ||
Chemical Name | 1,3,8-trihydroxy-6-(hydroxymethyl)anthracene-9,10-dione | ||
SMILES | C1=C(C=C2C(=C1O)C(=O)C3=C(C=C(C=C3C2=O)O)O)CO | ||
Standard InChIKey | YQHZABGPIPECSQ-UHFFFAOYSA-N | ||
Standard InChI | InChI=1S/C15H10O6/c16-5-6-1-8-12(10(18)2-6)15(21)13-9(14(8)20)3-7(17)4-11(13)19/h1-4,16-19H,5H2 | ||
General tips | For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months. We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months. Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it. |
||
About Packaging | 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial. 2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial. 3. Try to avoid loss or contamination during the experiment. |
||
Shipping Condition | Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request. |
Description | 1. Citreorosein is a cAMP phosphodiesterase inhibitor. 2. Citreorosein has anti-inflammatory effect, inhibits proinflammatory cytokines production through the inhibition of both MAPKs and AKT-mediated IκB kinase (IKK) phosphorylation and subsequent inhibition of transcription factor NF-κB activation. 3. Citreorosein attenuates degranulation and LTC(4) generation through the suppression of multiple step signaling and would be beneficial for the prevention of allergic inflammation. 4. Citreorosein strongly inhibits COX-2-dependent PGD2 generation in a concentration-dependent manner in mouse bone marrow-derived mast cells (BMMCs) stimulated with stem cell factor (SCF)/IL-10/LPS. |
Targets | cAMP | NF-kB | PI3K | Akt | COX | JNK | Phospholipase (e.g. PLA) | IkB | ERK | p38MAPK | AP-1 | p65 | IKK |
Citreorosein Dilution Calculator
Citreorosein Molarity Calculator
1 mg | 5 mg | 10 mg | 20 mg | 25 mg | |
1 mM | 3.4941 mL | 17.4703 mL | 34.9406 mL | 69.8812 mL | 87.3515 mL |
5 mM | 0.6988 mL | 3.4941 mL | 6.9881 mL | 13.9762 mL | 17.4703 mL |
10 mM | 0.3494 mL | 1.747 mL | 3.4941 mL | 6.9881 mL | 8.7352 mL |
50 mM | 0.0699 mL | 0.3494 mL | 0.6988 mL | 1.3976 mL | 1.747 mL |
100 mM | 0.0349 mL | 0.1747 mL | 0.3494 mL | 0.6988 mL | 0.8735 mL |
* Note: If you are in the process of experiment, it's necessary to make the dilution ratios of the samples. The dilution data above is only for reference. Normally, it's can get a better solubility within lower of Concentrations. |
Calcutta University
University of Minnesota
University of Maryland School of Medicine
University of Illinois at Chicago
The Ohio State University
University of Zurich
Harvard University
Colorado State University
Auburn University
Yale University
Worcester Polytechnic Institute
Washington State University
Stanford University
University of Leipzig
Universidade da Beira Interior
The Institute of Cancer Research
Heidelberg University
University of Amsterdam
University of Auckland
TsingHua University
The University of Michigan
Miami University
DRURY University
Jilin University
Fudan University
Wuhan University
Sun Yat-sen University
Universite de Paris
Deemed University
Auckland University
The University of Tokyo
Korea University
- Aloeemodin
Catalog No.:BCN5565
CAS No.:481-72-1
- Tangeretin
Catalog No.:BCN2386
CAS No.:481-53-8
- Cepharanthine
Catalog No.:BCN5393
CAS No.:481-49-2
- Ginkgetin
Catalog No.:BCN2319
CAS No.:481-46-9
- Plumbagin
Catalog No.:BCN2586
CAS No.:481-42-5
- Juglone
Catalog No.:BCN2639
CAS No.:481-39-0
- Ecgonine
Catalog No.:BCN1907
CAS No.:481-37-8
- Epiandrosterone
Catalog No.:BCC4481
CAS No.:481-29-8
- alpha-Spinasterol
Catalog No.:BCN5564
CAS No.:481-18-5
- Alpha-Santonin
Catalog No.:BCN7828
CAS No.:481-06-1
- Edoxaban tosylate
Catalog No.:BCC1544
CAS No.:480449-71-6
- Edoxaban
Catalog No.:BCC1543
CAS No.:480449-70-5
- Chrysophanol
Catalog No.:BCN5567
CAS No.:481-74-3
- Estriol 3-sulfate
Catalog No.:BCN2236
CAS No.:481-95-8
- Homoferreirin
Catalog No.:BCN4765
CAS No.:482-01-9
- Byakangelicin 2'-O-Isovalerate
Catalog No.:BCC8899
CAS No.:108006-56-0
- Isopimpinellin
Catalog No.:BCN5568
CAS No.:482-27-9
- Isoquercitrin
Catalog No.:BCN5569
CAS No.:482-35-9
- Hyperoside
Catalog No.:BCN5570
CAS No.:482-36-0
- Kaempferitrin
Catalog No.:BCN5572
CAS No.:482-38-2
- Afzelin
Catalog No.:BCN5573
CAS No.:482-39-3
- Imperatorin
Catalog No.:BCN5574
CAS No.:482-44-0
- Isoimperatorin
Catalog No.:BCN5897
CAS No.:482-45-1
- Isobergapten
Catalog No.:BCN2377
CAS No.:482-48-4
Citreorosein inhibits production of proinflammatory cytokines by blocking mitogen activated protein kinases, nuclear factor-kappaB and activator protein-1 activation in mouse bone marrow-derived mast cells.[Pubmed:22687535]
Biol Pharm Bull. 2012;35(6):938-45.
Citreorosein (CIT), an anthraquinone component of Polygoni cuspidati (P. cuspidati) radix, suppressed gene expression of proinflammatory cytokines including tumor necrosis factor (TNF)-alpha, interleukin (IL)-6 and IL-1beta in mouse bone marrow-derived mast cells (BMMCs) stimulated with phorbol 12-myristate 13-acetate (PMA) plus the calcium ionophore A23187. To investigate the molecular mechanisms underlying CIT inhibition of the pro-inflammatory cytokine production, its effects on the activation of both nuclear factor-kappaB (NF-kappaB) and mitogen-activated protein kinases (MAPKs) were assessed. CIT attenuated phosphorylation of the MAPKs including extracellular signal-regulated kinase 1/2 (ERK1/2), p38 MAP kinase and c-Jun NH(2)-terminal kinase (JNK). Furthermore, CIT strongly inhibited DNA binding activity of NF-kappaB through the inhibition of phosphorylation and degradation of inhibitor of kappaB (IkappaB) as well as activator protein-1 (AP)-1 through the reduction of phosphorylation of c-Jun. These results demonstrate that CIT inhibits proinflammatory cytokines production through the inhibition of both MAPKs and AKT-mediated IkappaB kinase (IKK) phosphorylation and subsequent inhibition of transcription factor NF-kappaB activation, thereby attenuating the production of proinflammatory cytokines.
Citreorosein inhibits degranulation and leukotriene C(4) generation through suppression of Syk pathway in mast cells.[Pubmed:22395859]
Mol Cell Biochem. 2012 Jun;365(1-2):333-41.
The aim of this study was to evaluate whether Citreorosein (CIT), a naturally occurring anthraquinone isolated from Polygoni cuspidati (P. cuspidati) radix, modulates degranulation and 5-lipoxygenase (5-LO)-dependent leukotriene C(4) (LTC(4)) generation in mast cells. Cit suppresses both degranulation and the generation of LTC(4) in a dose-dependent manner in stem cell factor (SCF)-mediated mouse bone marrow-derived mast cells (BMMCs). With regard to its molecular mechanism of action, we investigated the effects of CIT on intracellular signaling and mast cell activation employing BMMCs. Binding of SCF to c-Kit on mast cell membranes induced increases in intrinsic tyrosine kinase Syk activity and activation of multiple downstream events including phosphorylation of phospholipase Cgamma (PLCgamma), mobilization of intracellular Ca(2+), phosphatidylinositol 3-kinase (PI3K), Akt, MAP kinases (MAPKs), translocation of phospho-phospholipase A(2) (PLA(2)) and 5-LO. The results from the biochemical analysis demonstrate that CIT attenuates degranulation and LTC(4) generation through the suppression of multiple step signaling and would be beneficial for the prevention of allergic inflammation.
Citreorosein, a naturally occurring anthraquinone derivative isolated from Polygoni cuspidati radix, attenuates cyclooxygenase-2-dependent prostaglandin D2 generation by blocking Akt and JNK pathways in mouse bone marrow-derived mast cells.[Pubmed:22154852]
Food Chem Toxicol. 2012 Mar;50(3-4):913-9.
In this study, we examined the effects of Citreorosein (CIT), an anthraquinone component of Polygoni cuspidati radix (P. cuspidati, Polygonaceae), on cyclooxygenase (COX)-2 dependent prostaglandin (PG)D2 generation in mast cells, central effector cells of allergy and other inflammatory diseases. CIT strongly inhibited COX-2-dependent PGD2 generation in a concentration-dependent manner in mouse bone marrow-derived mast cells (BMMCs) stimulated with stem cell factor (SCF)/IL-10/LPS. In an effort to identify the mechanisms underlying the inhibition of COX-2-dependent PGD2 generation by CIT, we examined the effects of this compound on MAP kinases, Akt and NF-kappaB signaling pathways, which are essential for COX-2 induction. CIT inhibited nuclear translocation of the nuclear factor (NF)-kappaB p65 subunit and its cognate DNA-binding activity, which correlated with its inhibitory effects on the phosphorylation of Akt and IKK and subsequent phosphorylation and degradation of IkappaB. Furthermore, CIT significantly attenuated the DNA binding of activator protein (AP)-1 that regulates COX-2 expression through the reduction of the phosphorylation of c-Jun. Moreover, inhibition of PGD2 generation by CIT was accompanied by a decrease in phosphorylation of cytosolic phospholipase A2alpha. Taken together, the present study suggests that CIT represents a potential therapeutic approach for the treatment of inflammatory diseases.
A facile synthesis of emodin derivatives, emodin carbaldehyde, citreorosein, and their 10-deoxygenated derivatives and their inhibitory activities on mu-calpain.[Pubmed:22477191]
Arch Pharm Res. 2012 Mar;35(3):447-54.
A new procedure for the preparation of emodin carbaldehyde and Citreorosein was described, in which, omega,omega'-dibromomethylemodin triacetate was prepared as a key intermediate by NBSmediated bromination of 1,3,8-triacetylemodin. Reduction of emodin and Citreorosein with SnCl(2) in a 1:1 mixture of HOAc and HCl afforded the corresponding anthrones in 90% and 92% yield, respectively, while the corresponding 10-desoxyemodin carbaldehyde was prepared by MnO(2) oxidation of 10-desoxyCitreorosein. 10-DesoxyCitreorosein and emodin carbaldehyde showed feasible mu-calpain inhibitory activities with IC(50) values of 20.15 and 25.77 M, respectively.