DL-MethionineCAS# 59-51-8 |
2D Structure
- H-D-Met-OH
Catalog No.:BCC2997
CAS No.:348-67-4
- H-Met-OH
Catalog No.:BCC2993
CAS No.:63-68-3
Quality Control & MSDS
3D structure
Package In Stock
Number of papers citing our products
Cas No. | 59-51-8 | SDF | Download SDF |
PubChem ID | 876 | Appearance | Powder |
Formula | C5H11NO2S | M.Wt | 149 |
Type of Compound | N/A | Storage | Desiccate at -20°C |
Solubility | Soluble in Chloroform,Dichloromethane,Ethyl Acetate,DMSO,Acetone,etc. | ||
Chemical Name | 2-amino-4-methylsulfanylbutanoic acid | ||
SMILES | CSCCC(C(=O)O)N | ||
Standard InChIKey | FFEARJCKVFRZRR-UHFFFAOYSA-N | ||
Standard InChI | InChI=1S/C5H11NO2S/c1-9-3-2-4(6)5(7)8/h4H,2-3,6H2,1H3,(H,7,8) | ||
General tips | For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months. We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months. Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it. |
||
About Packaging | 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial. 2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial. 3. Try to avoid loss or contamination during the experiment. |
||
Shipping Condition | Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request. |
DL-Methionine Dilution Calculator
DL-Methionine Molarity Calculator
1 mg | 5 mg | 10 mg | 20 mg | 25 mg | |
1 mM | 6.7114 mL | 33.557 mL | 67.1141 mL | 134.2282 mL | 167.7852 mL |
5 mM | 1.3423 mL | 6.7114 mL | 13.4228 mL | 26.8456 mL | 33.557 mL |
10 mM | 0.6711 mL | 3.3557 mL | 6.7114 mL | 13.4228 mL | 16.7785 mL |
50 mM | 0.1342 mL | 0.6711 mL | 1.3423 mL | 2.6846 mL | 3.3557 mL |
100 mM | 0.0671 mL | 0.3356 mL | 0.6711 mL | 1.3423 mL | 1.6779 mL |
* Note: If you are in the process of experiment, it's necessary to make the dilution ratios of the samples. The dilution data above is only for reference. Normally, it's can get a better solubility within lower of Concentrations. |
Calcutta University
University of Minnesota
University of Maryland School of Medicine
University of Illinois at Chicago
The Ohio State University
University of Zurich
Harvard University
Colorado State University
Auburn University
Yale University
Worcester Polytechnic Institute
Washington State University
Stanford University
University of Leipzig
Universidade da Beira Interior
The Institute of Cancer Research
Heidelberg University
University of Amsterdam
University of Auckland
TsingHua University
The University of Michigan
Miami University
DRURY University
Jilin University
Fudan University
Wuhan University
Sun Yat-sen University
Universite de Paris
Deemed University
Auckland University
The University of Tokyo
Korea University
- Oxindole
Catalog No.:BCN4050
CAS No.:59-48-3
- Procaine
Catalog No.:BCC5210
CAS No.:59-46-1
- Thiamine chloride
Catalog No.:BCN8344
CAS No.:59-43-8
- Sulfaquinoxaline
Catalog No.:BCC9158
CAS No.:59-40-5
- Mepyramine maleate
Catalog No.:BCC6740
CAS No.:59-33-6
- Folic acid
Catalog No.:BCN5375
CAS No.:59-30-3
- D-Galactose
Catalog No.:BCN8528
CAS No.:59-23-4
- 5-BrdU
Catalog No.:BCC5293
CAS No.:59-14-3
- Ethopabate
Catalog No.:BCC8964
CAS No.:59-06-3
- Methotrexate
Catalog No.:BCC2301
CAS No.:59-05-2
- DL-alpha-Tocopherol
Catalog No.:BCN2200
CAS No.:59-02-9
- Xanthurenic acid
Catalog No.:BCC7866
CAS No.:59-00-7
- Nicotinic acid
Catalog No.:BCN8328
CAS No.:59-67-6
- Nitrofurazone
Catalog No.:BCC3825
CAS No.:59-87-0
- Levodopa
Catalog No.:BCN1098
CAS No.:59-92-7
- Tolazoline HCl
Catalog No.:BCC4321
CAS No.:59-97-2
- Betaine hydrochloride
Catalog No.:BCN6304
CAS No.:590-46-5
- Bethanechol chloride
Catalog No.:BCC4566
CAS No.:590-63-6
- alpha-Endorphin
Catalog No.:BCC1010
CAS No.:59004-96-5
- 8-Hydroxyhyperforin 8,1-hemiacetal
Catalog No.:BCN4091
CAS No.:59014-02-7
- Atropine sulfate monohydrate
Catalog No.:BCC3728
CAS No.:5908-99-6
- Dehydrotoxicarol
Catalog No.:BCN3991
CAS No.:59086-93-0
- Albaspidin AP
Catalog No.:BCN2398
CAS No.:59092-91-0
- (+)-Rhododendrol
Catalog No.:BCN7091
CAS No.:59092-94-3
Efficacy of 2-hydroxy-4-methylthiobutanoic acid compared to DL-Methionine on growth performance, carcass traits, feather growth, and redox status of Cherry Valley ducks.[Pubmed:29850886]
Poult Sci. 2018 Sep 1;97(9):3166-3175.
The objective of this study was to compare the bio-efficacy of 2-hydroxy-4-methylthiobutanoic acid (DL-HMTBA) with that of DL-Methionine (DLM) as sources of methionine in terms of the growth performance, carcass traits, feather growth, and redox statuses of Cherry Valley ducks. Six hundred and thirty male ducks were randomly allotted to 9 dietary treatment groups with 7 replicates of 10 birds each. The first group received a basal diet (BD) without methionine addition that was deficient in the total number of sulfur amino acids. In Groups 2 to 5 and Groups 6 to 9, the BD was supplemented with 4 increasing doses of methionine as either DLM or DL-HMTBA. The trial was run from ages 1 to 42 d. Dietary supplementation with DLM and DL-HMTBA improved body weight gain and feed intake as well as weights of carcasses, breast meat, and feathers compared with the BD. No significant difference was observed between the 2 methionine sources on growth performance, carcass traits, and feather growth. Concentrations of some redox markers in the pectoralis major muscle were improved by addition of methionine to the BD. However, a significant difference was observed between DLM and DL-HMTBA in this respect, as the supplementation of DL-HMTBA significantly increased the total antioxidant capacity, the activities of glutathione peroxidase, and the concentration of reduced glutathione in the pectoralis major muscle, compared with DLM. No significant difference between methionine sources was found with regard to the concentrations of oxidized glutathione and malondialdehyde in the pectoralis major muscle. Both DLM and DL-HMTBA increased malondialdehyde concentrations in the pectoralis major muscle compared with the BD. In conclusion, these results indicated that DLM and DL-HMTBA have equal biological value for the growth performance, carcass traits, and feather growth of Cherry Valley duck. Moreover, the improved antioxidant capacity observed with DL-HMTBA makes this a better candidate than DLM for lowering the oxidation process in the meat during post-mortem storage and thereby contributes to a better duck meat quality.