MEN 10376Potent, selective NK2 antagonist CAS# 135306-85-3 |
2D Structure
- NQDI 1
Catalog No.:BCC2404
CAS No.:175026-96-7
- GRI 977143
Catalog No.:BCC2401
CAS No.:325850-81-5
- Mdivi 1
Catalog No.:BCC2402
CAS No.:338967-87-6
- DAPK Substrate Peptide
Catalog No.:BCC2400
CAS No.:386769-53-5
- Cesium chloride
Catalog No.:BCC2399
CAS No.:7647-17-8
Quality Control & MSDS
3D structure
Package In Stock
Number of papers citing our products
Cas No. | 135306-85-3 | SDF | Download SDF |
PubChem ID | 124003 | Appearance | Powder |
Formula | C57H68N12O10 | M.Wt | 1081.24 |
Type of Compound | N/A | Storage | Desiccate at -20°C |
Solubility | Soluble in Chloroform,Dichloromethane,Ethyl Acetate,DMSO,Acetone,etc. | ||
Sequence | DYWVWWK (Modifications: Trp-3, Trp-5, Trp-6 = D-Trp, Lys-7 = C-terminal amide) | ||
Chemical Name | (3S)-3-amino-4-[[(2S)-1-[[(2R)-1-[[(2S)-1-[[(2R)-1-[[(2R)-1-[[(2S)-1,6-diamino-1-oxohexan-2-yl]amino]-3-(1H-indol-3-yl)-1-oxopropan-2-yl]amino]-3-(1H-indol-3-yl)-1-oxopropan-2-yl]amino]-3-methyl-1-oxobutan-2-yl]amino]-3-(1H-indol-3-yl)-1-oxopropan-2-yl]amino]-3-(4-hydroxyphenyl)-1-oxopropan-2-yl]amino]-4-oxobutanoic acid | ||
SMILES | CC(C)C(C(=O)NC(CC1=CNC2=CC=CC=C21)C(=O)NC(CC3=CNC4=CC=CC=C43)C(=O)NC(CCCCN)C(=O)N)NC(=O)C(CC5=CNC6=CC=CC=C65)NC(=O)C(CC7=CC=C(C=C7)O)NC(=O)C(CC(=O)O)N | ||
Standard InChIKey | QQHOFZNACVKNHK-SXVLBCBNSA-N | ||
Standard InChI | InChI=1S/C57H68N12O10/c1-31(2)50(69-56(78)48(26-35-30-63-43-16-8-5-13-39(35)43)67-53(75)45(23-32-18-20-36(70)21-19-32)65-52(74)40(59)27-49(71)72)57(79)68-47(25-34-29-62-42-15-7-4-12-38(34)42)55(77)66-46(24-33-28-61-41-14-6-3-11-37(33)41)54(76)64-44(51(60)73)17-9-10-22-58/h3-8,11-16,18-21,28-31,40,44-48,50,61-63,70H,9-10,17,22-27,58-59H2,1-2H3,(H2,60,73)(H,64,76)(H,65,74)(H,66,77)(H,67,75)(H,68,79)(H,69,78)(H,71,72)/t40-,44-,45-,46+,47+,48+,50-/m0/s1 | ||
General tips | For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months. We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months. Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it. |
||
About Packaging | 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial. 2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial. 3. Try to avoid loss or contamination during the experiment. |
||
Shipping Condition | Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request. |
Description | Potent and selective NK2 receptor antagonist (pA2 = 8.08, rabbit pulmonary artery). Displays > 250-fold selectivity over NK1 (pA2 = 5.66, guinea pig ileum) and NK3 (Ki > 10 mM, guinea pig brain). Active in vivo. |
MEN 10376 Dilution Calculator
MEN 10376 Molarity Calculator
Calcutta University
University of Minnesota
University of Maryland School of Medicine
University of Illinois at Chicago
The Ohio State University
University of Zurich
Harvard University
Colorado State University
Auburn University
Yale University
Worcester Polytechnic Institute
Washington State University
Stanford University
University of Leipzig
Universidade da Beira Interior
The Institute of Cancer Research
Heidelberg University
University of Amsterdam
University of Auckland
TsingHua University
The University of Michigan
Miami University
DRURY University
Jilin University
Fudan University
Wuhan University
Sun Yat-sen University
Universite de Paris
Deemed University
Auckland University
The University of Tokyo
Korea University
- 2''-O-Rhamnosylicariside II
Catalog No.:BCN3464
CAS No.:135293-13-9
- EW-7197
Catalog No.:BCC6467
CAS No.:1352608-82-2
- Pulchinenoside B
Catalog No.:BCN6554
CAS No.:135247-95-9
- Trijuganone C
Catalog No.:BCN3685
CAS No.:135247-94-8
- Pindolol
Catalog No.:BCC6881
CAS No.:13523-86-9
- AZD6738
Catalog No.:BCC6505
CAS No.:1352226-88-0
- Schineolignin B
Catalog No.:BCN3623
CAS No.:1352185-26-2
- AMG232
Catalog No.:BCC3992
CAS No.:1352066-68-2
- 3Beta-acetoxy-eupha-7,25-dien-24(R)-ol
Catalog No.:BCN1580
CAS No.:1352001-09-2
- Sanggenol P
Catalog No.:BCN4766
CAS No.:1351931-30-0
- H-Val-OtBu.HCl
Catalog No.:BCC3143
CAS No.:13518-40-6
- GNE-7915
Catalog No.:BCC5304
CAS No.:1351761-44-8
- 8,8'-Bibaicalein
Catalog No.:BCN6549
CAS No.:135309-02-3
- 5,7,3',4'-Tetrahydroxy-3-methoxy-8,5'-diprenylflavone
Catalog No.:BCN6848
CAS No.:1353676-65-9
- Isojasminin
Catalog No.:BCN7492
CAS No.:135378-08-4
- 4'-Hydroxyisojasminin
Catalog No.:BCN7383
CAS No.:135378-09-5
- 12alpha-Methoxygrandiflorenic acid
Catalog No.:BCN7771
CAS No.:135383-94-7
- 8-Prenyldaidzein
Catalog No.:BCN4711
CAS No.:135384-00-8
- CX-6258 hydrochloride hydrate
Catalog No.:BCC1505
CAS No.:1353858-99-7
- Bullatine A
Catalog No.:BCN2374
CAS No.:1354-84-3
- KH CB19
Catalog No.:BCC6135
CAS No.:1354037-26-5
- ACT 335827
Catalog No.:BCC6346
CAS No.:1354039-86-3
- trans-Ned 19
Catalog No.:BCC7825
CAS No.:1354235-96-3
- JW 480
Catalog No.:BCC6142
CAS No.:1354359-53-7
N-terminal truncated analogs of men 10376 as tachykinin NK-2 receptor antagonists.[Pubmed:1333561]
Life Sci. 1992;51(25):1929-36.
Three N-terminal fragments of the selective tachykinin NK-2 receptor antagonist MEN 10376 (H-Asp-Tyr-DTrp-Val-DTrp-DTrp-Lys-NH2) have been synthesized and tested in several mammalian tissues in order to establish the minimum length of the peptide chain for maintenance of the antagonist activity. Biological activity has been determined on the rabbit pulmonary artery (RPA) and hamster trachea (HT) preparations, chosen as representative of the NK-2A and NK-2B receptor subtypes, respectively, and on the rabbit bronchus (RB), guinea-pig bronchus (GPB), human urinary bladder (HuUB), human ileum (HuI) and human colon (HuC) preparations to verify the previously described NK-2A character of these tissues. The N-terminal tetrapeptide was inactive in the RPA and HT, while the N-terminal hexa- and penta- peptides maintained antagonist activity in all preparation investigated. The selectivity of the latter two peptides confirms that the receptor expressed in RB, GPB, HuUB, HuC and HuI tissues is of the NK-2A type.
Pharmacological characterization of tachykinin-induced intracellular calcium rise in a human NK2 receptor transfected cell line.[Pubmed:8185607]
Biochem Biophys Res Commun. 1994 May 16;200(3):1512-20.
We have examined the effect of various natural and synthetic tachykinins on the steady state Ca(++)-rise ([Ca++]i) in transfected chinese hamster ovary cells expressing recombinant human Neurokinin 2 (NK2) receptors. The rank order of potency with natural tachykinins was NeurokininA > Neurokinin B > Eledoisin > Physaelamin > substance P. The selective NK2 agonist, [beta-Ala8]NKA(4-10) was very potent, with an EC50 value of 4.83 x 10(-9) M whereas Senktide, MePhe7NKB and Sar9, (MetO2)11 substance P, selective NK3 and NK1 agonists, respectively, did not have any effect on [Ca++]i in hrNK2CHO cells, suggesting a selective and preferential recognition and activation of NK2 receptors in these cells. (+/-) SR 48968, a selective NK2 antagonist, abolished the beta-AlaNKA-induced [Ca++]i with an IC50 value of 0.7 nM. Two other peptidic NK2 antagonists, MEN 10376 and L-658977, were less active with IC50 values of 49 nM and 5.29 microM, respectively. In contrast, (+/-) CP-96,345 and (+/-)CP-99,994 and RP 67580, all selective NK1 antagonists, did not have any effect on the beta-AlaNKA-induced [Ca++]i in hrNK2CHO cells (+/-) SR 140333, a potent and selective NK1 antagonist, had a 35% inhibition under similar conditions. These data demonstrate a high selectivity and sensitivity to NK2 receptor mediated [Ca++]i in rhNK2R-CHO cells and may be of value as a rapid, selective test of drug action at the human NK2 receptors in vitro.
Tachykininergic transmission to the circular muscle of the guinea-pig ileum: evidence for the involvement of NK2 receptors.[Pubmed:1380373]
Br J Pharmacol. 1992 Apr;105(4):805-10.
1. The effect of newly developed, receptor-selective tachykinin antagonists (GR 71,251 for NK1 receptors, MEN 10,376 and L 659,877 for NK2 receptors) on noncholinergic transmission to the circular muscle of the guinea-pig ileum has been investigated. 2. In circular muscle strips of the ileum, electrical field stimulation in the presence of atropine (2 microM) and apamin (0.1 microM) evoked a complex motor response. The tonic primary contraction in this response was reduced by GR 71,251 (10 microM) and MEN 10,376 (3-10 microM) but not by L 659,877 (up to 10 microM). The presence of apamin was necessary in this experimental arrangement to unmask an atropine-resistant primary contraction, sensitive to tachykinin antagonists. The motor response was abolished by tetrodotoxin. 3. In circular strips of the ileum GR 71,251 (10 microM) inhibited the tonic contraction produced by [Sar9] substance P sulphone, a selective NK1 receptor agonist but not that produced by [beta Ala8] neurokinin A (4-10), a selective NK2 receptor agonist. By contrast, MEN 10,376 antagonized the effect of the NK2 agonist while leaving the response to the NK1 agonist unaffected. 4. In whole segments of the ileum, distension of the gut wall by an intraluminal balloon placed at about 1 cm from the point of recording of mechanical activity of the circular muscle produced atropine-sensitive phasic contractions (ascending enteric reflex). In the presence of atropine (2 microM), a noncholinergic response was elicited, which required larger volumes of distension that the cholinergic one. The atropine-resistant ascending enteric reflex was enhanced by apamin (0.1 microM) and abolished by tetrodotoxin, either in the presence or absence of apamin.5. MEN 10,376 (3-lOmicroM) inhibited the atropine-resistant ascending enteric reflex in the presence of apamin while GR 71,251 or L 659,877 (10 microM each) were ineffective. MEN 10,376 inhibited the atropine-resistant ascending enteric reflex to a larger extent in the absence than in the presence of apamin and also slightly inhibited the ascending enteric reflex in the absence of atropine.6. These findings provide evidence for an involvement of NK2 tachykinin receptors in excitatory transmission to the circular muscle of the guinea-pig ileum. NK2 receptors are also involved in the physiological-like circular muscle activation produced by stimulation of intramural neuronal pathways which subserve the atropine-resistant ascending enteric reflex.