Home >> Research Area >>Natural Products>>Phenylpropanoids>> Methyl 4-caffeoylquinate

Methyl 4-caffeoylquinate

CAS# 123372-74-7

Methyl 4-caffeoylquinate

Catalog No. BCN3442----Order now to get a substantial discount!

Product Name & Size Price Stock
Methyl 4-caffeoylquinate: 5mg Please Inquire In Stock
Methyl 4-caffeoylquinate: 10mg Please Inquire In Stock
Methyl 4-caffeoylquinate: 20mg Please Inquire Please Inquire
Methyl 4-caffeoylquinate: 50mg Please Inquire Please Inquire
Methyl 4-caffeoylquinate: 100mg Please Inquire Please Inquire
Methyl 4-caffeoylquinate: 200mg Please Inquire Please Inquire
Methyl 4-caffeoylquinate: 500mg Please Inquire Please Inquire
Methyl 4-caffeoylquinate: 1000mg Please Inquire Please Inquire

Quality Control of Methyl 4-caffeoylquinate

Number of papers citing our products

Chemical structure

Methyl 4-caffeoylquinate

3D structure

Chemical Properties of Methyl 4-caffeoylquinate

Cas No. 123372-74-7 SDF Download SDF
PubChem ID 71720840 Appearance Powder
Formula C17H20O9 M.Wt 368.3
Type of Compound Phenylpropanoids Storage Desiccate at -20°C
Solubility Soluble in Chloroform,Dichloromethane,Ethyl Acetate,DMSO,Acetone,etc.
Chemical Name methyl (3R,5R)-4-[(E)-3-(3,4-dihydroxyphenyl)prop-2-enoyl]oxy-1,3,5-trihydroxycyclohexane-1-carboxylate
SMILES COC(=O)C1(CC(C(C(C1)O)OC(=O)C=CC2=CC(=C(C=C2)O)O)O)O
Standard InChIKey SMFKCIHIAHWGGL-JUEQGWKHSA-N
Standard InChI InChI=1S/C17H20O9/c1-25-16(23)17(24)7-12(20)15(13(21)8-17)26-14(22)5-3-9-2-4-10(18)11(19)6-9/h2-6,12-13,15,18-21,24H,7-8H2,1H3/b5-3+/t12-,13-,15?,17?/m1/s1
General tips For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months.
We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months.
Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it.
About Packaging 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial.
2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial.
3. Try to avoid loss or contamination during the experiment.
Shipping Condition Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request.

Source of Methyl 4-caffeoylquinate

The flowerbud of Lonicera japonica Thunb.

Protocol of Methyl 4-caffeoylquinate

Structure Identification
Zhongguo Zhong yao za zhi, 2018, 43(1):114-118.

Constituents isolated from n-butanol extract of leaves of Moringa oleifera.[Reference: WebLink]


METHODS AND RESULTS:
Seventeen compounds were isolated from n-butanol extract of the leaves of Moringa oleifera, using column chromatography over macroporous resin HP-20,Sephadex LH-20, and ODS. Their structures were identified as two carboline,tangutorid E(1) and tangutorid F(2); three phenolic glycosides,niazirin(3),benzaldehyde 4-O-α-L-rhamnopyranoside(4) and 4-O-β-D-glucopyranosidebenzoic acid(5); four chlorogenic acid and derivatives,4-caffeoylquinic acid(6),Methyl 4-caffeoylquinate(7),caffeoylquinic acid(8) and methyl caffeoylquinate(9); two nucleosids,uridine(10) and adenosine(11); one flavone,quercetin 3-O-β-D-glucopyranoside(12); five other types of compounds,phthalimidineacetic acid(13),3-pyridinecarboxamide(14),3,4-dihydroxy-benzoic acid(15),5-hydroxymethyl-2-furancarboxylic acid(16) and 5-hydroxymethyl-2-furaldehyde(17) by the spectral data of ¹H, ¹³C-NMR and MS.
CONCLUSIONS:
Among them,compounds 1-2,7,9-10,16 and 17 were isolated from M. oleifera for the first time.

Methyl 4-caffeoylquinate Dilution Calculator

Concentration (start)
x
Volume (start)
=
Concentration (final)
x
Volume (final)
 
 
 
C1
V1
C2
V2

calculate

Methyl 4-caffeoylquinate Molarity Calculator

Mass
=
Concentration
x
Volume
x
MW*
 
 
 
g/mol

calculate

Preparing Stock Solutions of Methyl 4-caffeoylquinate

1 mg 5 mg 10 mg 20 mg 25 mg
1 mM 2.7152 mL 13.5759 mL 27.1518 mL 54.3036 mL 67.8794 mL
5 mM 0.543 mL 2.7152 mL 5.4304 mL 10.8607 mL 13.5759 mL
10 mM 0.2715 mL 1.3576 mL 2.7152 mL 5.4304 mL 6.7879 mL
50 mM 0.0543 mL 0.2715 mL 0.543 mL 1.0861 mL 1.3576 mL
100 mM 0.0272 mL 0.1358 mL 0.2715 mL 0.543 mL 0.6788 mL
* Note: If you are in the process of experiment, it's necessary to make the dilution ratios of the samples. The dilution data above is only for reference. Normally, it's can get a better solubility within lower of Concentrations.

Organizitions Citing Our Products recently

 
 
 

Calcutta University

University of Minnesota

University of Maryland School of Medicine

University of Illinois at Chicago

The Ohio State University

University of Zurich

Harvard University

Colorado State University

Auburn University

Yale University

Worcester Polytechnic Institute

Washington State University

Stanford University

University of Leipzig

Universidade da Beira Interior

The Institute of Cancer Research

Heidelberg University

University of Amsterdam

University of Auckland
TsingHua University
TsingHua University
The University of Michigan
The University of Michigan
Miami University
Miami University
DRURY University
DRURY University
Jilin University
Jilin University
Fudan University
Fudan University
Wuhan University
Wuhan University
Sun Yat-sen University
Sun Yat-sen University
Universite de Paris
Universite de Paris
Deemed University
Deemed University
Auckland University
Auckland University
The University of Tokyo
The University of Tokyo
Korea University
Korea University
Featured Products
New Products
 

References on Methyl 4-caffeoylquinate

6-Hydroxy-3-O-methyl-kaempferol 6-O-glucopyranoside potentiates the anti-proliferative effect of interferon alpha/beta by promoting activation of the JAK/STAT signaling by inhibiting SOCS3 in hepatocellular carcinoma cells.[Pubmed:29031523]

Toxicol Appl Pharmacol. 2017 Dec 1;336:31-39.

Suppressor of cytokine signaling 3 (SOCS3) is a key negative regulator of type I interferon (IFN alpha/beta) signaling. Inhibition of SOCS3 by small molecules may be a new strategy to enhance the efficacy of type I IFN and reduce its side effects. We established a cell-based screening assay using human hepatoma HepG2 cells stably transfected with a plasmid wherein the luciferase reporter activity was propelled by interferon alpha-stimulated response element (ISRE), which is a motif specifically recognized by type I IFN-induced activation of Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway. After screening our chemical library, 6-hydroxy-3-O-methyl-kaempferol 6-O-glucopyranoside (K6G) was identified to be a potent activator of type I IFN with EC50 value of 3.33+/-0.04muM. K6G enhanced the phosphorylation of JAK1, Tyk2, and STAT1/2 but decreased the phosphorylation of STAT3. K6G also promoted endogenous IFN-alpha-regulated genes expression. More interestingly, K6G significantly decreased the expression of SOCS3 without affecting the expression of SOCS1. Furthermore, K6G enhanced the anti-proliferative effect of IFN-alpha on hepatocellular carcinoma (HCC) cells. These results suggested that K6G potentiated the inhibitory effect of IFN-alpha on HCC cell proliferation through activation of the JAK/STAT signaling pathway by inhibiting SOCS3 expression. K6G warrants further investigation as a novel therapeutic method to enhance the efficacy of IFN-alpha/beta.

Highly selective and sensitive colorimetric determination of Cr(3+) ion by 4-amino-5-methyl-4H-1,2,4-triazole-3-thiol functionalized Au nanoparticles.[Pubmed:29032343]

Spectrochim Acta A Mol Biomol Spectrosc. 2018 Feb 15;191:189-194.

In this work, a rapid, selective naked eyes colorimetric chemical probe for the detection of Cr(3+) was developed based on functionalization of gold nanoparticles. For this purpose, surface of Au NPs was functionalized using 4-amino-5-methyl-4H-1,2,4-triazole-3-thiol (AMTT). Through colorimetric studies, it was found that in the presence of Cr(3+) ions, AMTT-Au NPs instantly aggregated and resulted in a color change of the solution from red to blue. The color change of AMTT-Au NPs due to the aggregation induced by Cr(3+) can be seen with even naked eyes and also by UV-Vis spectroscopy with a detection limit of 1.8muM and 0.1muM, respectively. AMTT-Au NPs showed excellent selectivity toward Cr(3+) compared to other cations tested, including K(+), Na(+), Cs(+), Fe(3+), Ni(2+), Cu(2+), Co(2+), Zn(2+), Ba(2+), Ca(2+), Mg(2+), Cd(2+), Pb(2+), Hg(2+) ions and especially all trivalent lanthanide ions. The absorbance ratio (A650/A525) was linear toward Cr(3+) concentrations in the range of 0.6-6.1muM (R(2)=0.996). The best response was achieved over a pH range of 3-5. Furthermore, the proposed colorimetric method based on AMTT-Au NPs was successfully used for Cr(3+) ion detection in plasma sample and some water samples.

Role of ethanolic extract of Bacopa monnieri against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) induced mice model via inhibition of apoptotic pathways of dopaminergic neurons.[Pubmed:29032054]

Brain Res Bull. 2017 Oct;135:120-128.

Parkinson's disease (PD) is a neurodegenerative disease which causes rigidity, resting tremor and postural instability. The neuroprotective effects of an ethanolic extract of Bacopa monnieri (BM) were evaluated in a Parkinsonian mice model induced by the MPTP. The present study investigates the mechanisms of neuroprotection elicited by BM, an herb traditionally recognized by the Indian system of medicine, Ayurveda. An ethanolic extract of BM was co-treated with the MPTP induced mouse model of PD and was shown to significantly rescue the motor behaviour (Rotarod, Grip Strength and Foot Printing test). Furthermore, on biochemical parameters too BM significantly showed protective effect as Catalase, LPO, Nitrite, SOD, GR, GPx parameters showed marked improvement and levels of Dopamine, DOPAC and HVA were enhanced significantly. There was a significant reduction in tyrosine hydroxylase (TH) immunoreactivity in the substantia nigra (SN) in MPTP treated group, which was considerably restored by the use of BM extract. BM also facilitated neuroprotection by creating an anti-apoptotic environment indicated by reduced apoptotic (Bax and caspase-3) and increased levels of anti-apoptotic (Bcl2) protein expression, respectively. Altogether, the present study suggests that BM treatment provides nigrostriatal dopaminergic neuroprotection against MPTP induced Parkinsonism by the modulation of oxidative stress and apoptotic machinery possibly accounting for the behavioural effects.

Keywords:

Methyl 4-caffeoylquinate,123372-74-7,Natural Products, buy Methyl 4-caffeoylquinate , Methyl 4-caffeoylquinate supplier , purchase Methyl 4-caffeoylquinate , Methyl 4-caffeoylquinate cost , Methyl 4-caffeoylquinate manufacturer , order Methyl 4-caffeoylquinate , high purity Methyl 4-caffeoylquinate

Online Inquiry for:

      Fill out the information below

      • Size:Qty: - +

      * Required Fields

                                      Result: