PrimverinCAS# 154-60-9 |
2D Structure
Quality Control & MSDS
3D structure
Package In Stock
Number of papers citing our products
Cas No. | 154-60-9 | SDF | Download SDF |
PubChem ID | 3038513 | Appearance | White powder |
Formula | C20H28O13 | M.Wt | 476.4 |
Type of Compound | Organic acids & Esters | Storage | Desiccate at -20°C |
Solubility | Soluble in water; sparingly soluble in ethan | ||
Chemical Name | methyl 4-methoxy-2-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-[[(2S,3R,4S,5R)-3,4,5-trihydroxyoxan-2-yl]oxymethyl]oxan-2-yl]oxybenzoate | ||
SMILES | COC1=CC(=C(C=C1)C(=O)OC)OC2C(C(C(C(O2)COC3C(C(C(CO3)O)O)O)O)O)O | ||
Standard InChIKey | DZRVGBRAMLSZDQ-HSMQXHTESA-N | ||
Standard InChI | InChI=1S/C20H28O13/c1-28-8-3-4-9(18(27)29-2)11(5-8)32-20-17(26)15(24)14(23)12(33-20)7-31-19-16(25)13(22)10(21)6-30-19/h3-5,10,12-17,19-26H,6-7H2,1-2H3/t10-,12-,13+,14-,15+,16-,17-,19+,20-/m1/s1 | ||
General tips | For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months. We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months. Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it. |
||
About Packaging | 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial. 2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial. 3. Try to avoid loss or contamination during the experiment. |
||
Shipping Condition | Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request. |
Primverin Dilution Calculator
Primverin Molarity Calculator
1 mg | 5 mg | 10 mg | 20 mg | 25 mg | |
1 mM | 2.0991 mL | 10.4954 mL | 20.9908 mL | 41.9815 mL | 52.4769 mL |
5 mM | 0.4198 mL | 2.0991 mL | 4.1982 mL | 8.3963 mL | 10.4954 mL |
10 mM | 0.2099 mL | 1.0495 mL | 2.0991 mL | 4.1982 mL | 5.2477 mL |
50 mM | 0.042 mL | 0.2099 mL | 0.4198 mL | 0.8396 mL | 1.0495 mL |
100 mM | 0.021 mL | 0.105 mL | 0.2099 mL | 0.4198 mL | 0.5248 mL |
* Note: If you are in the process of experiment, it's necessary to make the dilution ratios of the samples. The dilution data above is only for reference. Normally, it's can get a better solubility within lower of Concentrations. |
Calcutta University
University of Minnesota
University of Maryland School of Medicine
University of Illinois at Chicago
The Ohio State University
University of Zurich
Harvard University
Colorado State University
Auburn University
Yale University
Worcester Polytechnic Institute
Washington State University
Stanford University
University of Leipzig
Universidade da Beira Interior
The Institute of Cancer Research
Heidelberg University
University of Amsterdam
University of Auckland
TsingHua University
The University of Michigan
Miami University
DRURY University
Jilin University
Fudan University
Wuhan University
Sun Yat-sen University
Universite de Paris
Deemed University
Auckland University
The University of Tokyo
Korea University
- 1,5-Anhydro-D-glucitol
Catalog No.:BCN2234
CAS No.:154-58-5
- Thioguanine
Catalog No.:BCC2220
CAS No.:154-42-7
- Catechin
Catalog No.:BCN1688
CAS No.:154-23-4
- Lincomycin
Catalog No.:BCC9010
CAS No.:154-21-2
- 2-Deoxy-D-glucose
Catalog No.:BCC4048
CAS No.:154-17-6
- ANQ 11125
Catalog No.:BCC6359
CAS No.:153966-48-4
- p-Hydroxyphenethyl vanillate
Catalog No.:BCN7555
CAS No.:1539303-03-1
- NBOH-2C-CN hydrochloride
Catalog No.:BCC8025
CAS No.:1539266-32-4
- Boc-Gln-ONp
Catalog No.:BCC3383
CAS No.:15387-45-8
- BLU9931
Catalog No.:BCC3979
CAS No.:1538604-68-0
- Fmoc-Trp-ol
Catalog No.:BCC2573
CAS No.:153815-60-2
- Dioxopromethazine hydrochloride
Catalog No.:BCC8946
CAS No.:15374-15-9
- Primulaverin
Catalog No.:BCC8235
CAS No.:154-61-0
- Tripelennamine HCl
Catalog No.:BCC4523
CAS No.:154-69-8
- Bz-Arg-OH
Catalog No.:BCC2856
CAS No.:154-92-7
- Carmustine
Catalog No.:BCC5244
CAS No.:154-93-8
- Ipecoside
Catalog No.:BCN8301
CAS No.:15401-60-2
- Berberrubine
Catalog No.:BCN2651
CAS No.:15401-69-1
- Marimastat
Catalog No.:BCC2118
CAS No.:154039-60-8
- Fuscaxanthone C
Catalog No.:BCN3885
CAS No.:15404-76-9
- Isonormangostin
Catalog No.:BCN1687
CAS No.:15404-80-5
- 3-(Bromomethyl)-2-cyclopropyl-4-(4'-fluorophenyl)quinoline
Catalog No.:BCC8591
CAS No.:154057-56-4
- ((2-cyclopropyl-4-(4-fluorophenyl)quinolin-3-yl)methyl)triphenylphosphonium bromide
Catalog No.:BCC8373
CAS No.:154057-58-6
- 2-(3-Methoxypropyl)-4-oxo-3,4-dihydro-2H-thieno[3,2-e][1,2]thiazine-6-sulfonamide 1,1-dioxide
Catalog No.:BCC8480
CAS No.:154127-41-0
Phenolics in Primula veris L. and P. elatior (L.) Hill Raw Materials.[Pubmed:28835753]
Int J Anal Chem. 2017;2017:2871579.
Primula veris L. and Primula elatior (L.) Hill represent medicinal plants used for the production of herbal teas and preparations with antioxidant and expectorant activity. Flowers and roots of both species possess the same biological activity. In the presented study, raw materials of wild growing P. veris and P. elatior were compared in terms of the content and composition of phenolic compounds using a fast and simple HPLC-DAD method. The study showed that flowers of both species were rich in flavonoids. However, P. veris flowers were characterized with a distinctly higher content of isorhamnetin-3-O-glucoside, astragalin, and (+)-catechin, whereas P. elatior occurred to be a richer source of rutoside and isorhamnetin-3-O-rutinoside. Hyperoside was found exclusively in P. elatior flowers. Phenolic glycosides (Primverin and primulaverin) were identified only in the roots. Their content was about ten times higher in P. veris in comparison with P. elatior underground organs. The obtained results clearly show that both Primula species differ distinctly in terms of the content and composition of phenolic compounds. The compounds differentiating both species to the highest degree (hyperoside, in flowers, as well as Primverin and primulaverin, in the roots) may be useful chemical markers in the identification and evaluation of both species.