ZeaxanthinCAS# 144-68-3 |
Quality Control & MSDS
Number of papers citing our products
Chemical structure
3D structure
Cas No. | 144-68-3 | SDF | Download SDF |
PubChem ID | 5280899 | Appearance | Powder |
Formula | C40H56O2 | M.Wt | 568.88 |
Type of Compound | Miscellaneous | Storage | Desiccate at -20°C |
Solubility | Soluble in Chloroform,Dichloromethane,Ethyl Acetate,DMSO,Acetone,etc. | ||
Chemical Name | (1R)-4-[(1E,3E,5E,7E,9E,11E,13E,15E,17E)-18-[(4R)-4-hydroxy-2,6,6-trimethylcyclohexen-1-yl]-3,7,12,16-tetramethyloctadeca-1,3,5,7,9,11,13,15,17-nonaenyl]-3,5,5-trimethylcyclohex-3-en-1-ol | ||
SMILES | CC1=C(C(CC(C1)O)(C)C)C=CC(=CC=CC(=CC=CC=C(C)C=CC=C(C)C=CC2=C(CC(CC2(C)C)O)C)C)C | ||
Standard InChIKey | JKQXZKUSFCKOGQ-QAYBQHTQSA-N | ||
Standard InChI | InChI=1S/C40H56O2/c1-29(17-13-19-31(3)21-23-37-33(5)25-35(41)27-39(37,7)8)15-11-12-16-30(2)18-14-20-32(4)22-24-38-34(6)26-36(42)28-40(38,9)10/h11-24,35-36,41-42H,25-28H2,1-10H3/b12-11+,17-13+,18-14+,23-21+,24-22+,29-15+,30-16+,31-19+,32-20+/t35-,36-/m1/s1 | ||
General tips | For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months. We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months. Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it. |
||
About Packaging | 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial. 2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial. 3. Try to avoid loss or contamination during the experiment. |
||
Shipping Condition | Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request. |
Description | 1. Lutein and Zeaxanthin in neural tissue may have biological effects that include antioxidation, anti-inflammation, and structural actions. 2. Lutein and Zeaxanthin may be protective against eye disease because they absorb damaging blue light that enters the eye. |
Targets | Immunology & Inflammation related |
Zeaxanthin Dilution Calculator
Zeaxanthin Molarity Calculator
1 mg | 5 mg | 10 mg | 20 mg | 25 mg | |
1 mM | 1.7578 mL | 8.7892 mL | 17.5784 mL | 35.1568 mL | 43.946 mL |
5 mM | 0.3516 mL | 1.7578 mL | 3.5157 mL | 7.0314 mL | 8.7892 mL |
10 mM | 0.1758 mL | 0.8789 mL | 1.7578 mL | 3.5157 mL | 4.3946 mL |
50 mM | 0.0352 mL | 0.1758 mL | 0.3516 mL | 0.7031 mL | 0.8789 mL |
100 mM | 0.0176 mL | 0.0879 mL | 0.1758 mL | 0.3516 mL | 0.4395 mL |
* Note: If you are in the process of experiment, it's necessary to make the dilution ratios of the samples. The dilution data above is only for reference. Normally, it's can get a better solubility within lower of Concentrations. |
Calcutta University
University of Minnesota
University of Maryland School of Medicine
University of Illinois at Chicago
The Ohio State University
University of Zurich
Harvard University
Colorado State University
Auburn University
Yale University
Worcester Polytechnic Institute
Washington State University
Stanford University
University of Leipzig
Universidade da Beira Interior
The Institute of Cancer Research
Heidelberg University
University of Amsterdam
University of Auckland
TsingHua University
The University of Michigan
Miami University
DRURY University
Jilin University
Fudan University
Wuhan University
Sun Yat-sen University
Universite de Paris
Deemed University
Auckland University
The University of Tokyo
Korea University
- Oxalic acid
Catalog No.:BCN8515
CAS No.:144-62-7
- Sodium bicarbonate
Catalog No.:BCC7584
CAS No.:144-55-8
- Sodium barbital
Catalog No.:BCN2160
CAS No.:144-02-5
- CTX0294885
Catalog No.:BCC6396
CAS No.:1439934-41-4
- Jaceidin triacetate
Catalog No.:BCN6245
CAS No.:14397-69-4
- CB-839
Catalog No.:BCC5493
CAS No.:1439399-58-2
- M40
Catalog No.:BCC7686
CAS No.:143896-17-7
- Elacridar hydrochloride
Catalog No.:BCC1547
CAS No.:143851-98-3
- CC-401 hydrochloride
Catalog No.:BCC1458
CAS No.:1438391-30-0
- 2,24-Dihydroxyursolic acid
Catalog No.:BCN6244
CAS No.:143839-02-5
- Fmoc-Trp(Boc)-OH
Catalog No.:BCC3558
CAS No.:143824-78-6
- 22-Dehydroclerosterol glucoside
Catalog No.:BCN6243
CAS No.:143815-99-0
- Sulfathiazole sodium
Catalog No.:BCC5207
CAS No.:144-74-1
- Sulfamethizole
Catalog No.:BCC4856
CAS No.:144-82-1
- Sulfapyridine
Catalog No.:BCC4729
CAS No.:144-83-2
- Sodium Nitroprusside
Catalog No.:BCC4844
CAS No.:14402-89-2
- BRD73954
Catalog No.:BCC5652
CAS No.:1440209-96-0
- Piclamilast
Catalog No.:BCC6215
CAS No.:144035-83-6
- 6-O-Syringoylajugol
Catalog No.:BCN6246
CAS No.:144049-72-9
- Febuxostat
Catalog No.:BCC2556
CAS No.:144060-53-7
- Deltarasin
Catalog No.:BCC1524
CAS No.:1440898-61-2
- Deltarasin hydrochloride
Catalog No.:BCC4270
CAS No.:1440898-82-7
- Tarasaponin VII
Catalog No.:BCN2684
CAS No.:144118-18-3
- Fmoc-Asp-OAll
Catalog No.:BCC3086
CAS No.:144120-53-6
Role of lutein and zeaxanthin in visual and cognitive function throughout the lifespan.[Pubmed:25109868]
Nutr Rev. 2014 Sep;72(9):605-12.
The relationship between lutein and Zeaxanthin and visual and cognitive health throughout the lifespan is compelling. There is a variety of evidence to support a role for lutein and Zeaxanthin in vision. Lutein's role in cognition has only recently been considered. Lutein and its isomer, Zeaxanthin, are taken up selectively into eye tissue. Lutein is the predominant carotenoid in human brain tissue. Lutein and Zeaxanthin in neural tissue may have biological effects that include antioxidation, anti-inflammation, and structural actions. In addition, lutein and Zeaxanthin may be protective against eye disease because they absorb damaging blue light that enters the eye. In pediatric brains, the relative contribution of lutein to the total carotenoids is twice that found in adults, accounting for more than half the concentration of total carotenoids. The greater proportion of lutein in the pediatric brain suggests a need for lutein during neural development as well. In adults, higher lutein status is related to better cognitive performance, and lutein supplementation improves cognition. The evidence to date warrants further investigation into the role of lutein and Zeaxanthin in visual and cognitive health throughout the lifespan.
A randomized placebo-controlled study on the effects of lutein and zeaxanthin on visual processing speed in young healthy subjects.[Pubmed:25483230]
Arch Biochem Biophys. 2015 Apr 15;572:54-57.
Speed of processing is a particularly important characteristic of the visual system. Often a behavioral reaction to a visual stimulus must be faster than the conscious perception of that stimulus, as is the case with many sports (e.g., baseball). Visual psychophysics provides a relatively simple and precise means of measuring visual processing speed called the temporal contrast sensitivity function (tCSF). Past study has shown that macular pigment (a collection of xanthophylls, lutein (L), meso-Zeaxanthin (MZ) and Zeaxanthin (Z), found in the retina) optical density (MPOD) is positively correlated with the tCSF. In this study, we found similar correlations when testing 102 young healthy subjects. As a follow-up, we randomized 69 subjects to receive a placebo (n=15) or one of two L and Z supplements (n=54). MPOD and tCSF were measured psychophysically at baseline and 4months. Neither MPOD nor tCSF changed for the placebo condition, but both improved significantly as a result of supplementation. These results show that an intervention with L and Z can increase processing speed even in young healthy subjects.
Lutein and zeaxanthin toxicity with and without brilliant blue in rabbits.[Pubmed:24901374]
J Ocul Pharmacol Ther. 2014 Sep;30(7):559-66.
PURPOSE: To evaluate the safety profile of solutions containing lutein and Zeaxanthin alone or associated with brilliant blue (BB). METHODS: Twenty-eight New Zealand rabbits were used to evaluate 4 concentrations of the various dye solutions: 0.5% lutein/Zeaxanthin; 0.5% lutein/Zeaxanthin associated with 0.0125% BB; 0.3% lutein/Zeaxanthin associated with 0.025% BB; and 0.25% lutein/Zeaxanthin associated with 0.05% BB. The pHs of the dye solutions ranged from 6.5 to 7.2 and the osmolarities from 280 to 320 mOsm/mL. Each rabbit had 0.1 mL of one of the dyeing solutions injected into the vitreous cavity of the right eye, while balanced salt solution (BSS) was injected into the left eye as the control. Scotopic electroretinography responses were recorded in all eyes at different time points. The animals were sacrificed at 1 and 7 days after injection; the eyes were analyzed by light and transmission electron microscopy. RESULTS: No significant (P>0.05) differences were seen in the a- and b-wave amplitudes among groups at any given point in time. Light and electron microscopy findings showed no significant abnormalities either, and were similar to the histological findings after intravitreal BSS injection. CONCLUSIONS: Lutein and Zeaxanthin alone or in association with BB showed a good safety profile in this experimental model.
Safety evaluation of zeaxanthin concentrate (OmniXan): acute, subchronic toxicity and mutagenicity studies.[Pubmed:24964014]
Food Chem Toxicol. 2014 Oct;72:30-9.
The available evidence suggests a beneficial effect of Zeaxanthin against the progression of age-related macular degeneration (AMD). The objective of the present study was to investigate potential adverse effects of OmniXan, a RR-Zeaxanthin (65%) enriched product obtained from paprika (Capsicum annum fruits) in subchronic toxicity and mutagenicity studies. The oral LD50 of OmniXan(TM) in rats was greater than 2000 mg/kgbody weight (bw)/day. For the subchronic toxicity study, Wistar rats (10/sex/group) were gavaged daily with Zeaxanthin concentrate at doses of 0, 4, 40 and 400 mg/kg bw/day for 90-days. No treatment related clinical signs and mortalities observed. Similarly, no treatment related toxicologically significant changes in body weight, feed consumption; ophthalmoscopic examination, neurological examination, hematology, urine analysis and organ weights were observed. Statistically significant changes observed in some clinical chemistry parameters were considered toxicologically and biologically insignificant and nonadverse. Macroscopic and microscopic examinations did not reveal treatment-related abnormalities. The results of mutagenicity testing using Salmonella typhimurium did not reveal any genotoxicity. The no observed-adverse-effect level (NOAEL) for Zeaxanthin concentrate (OmniXan(TM)) was determined as 400 mg/kg bw/day, the highest dose tested. The findings of this subchronic toxicity and mutagenicity studies support safety of Zeaxanthin concentrate.