M40Potent, non-selective galanin receptor antagonist CAS# 143896-17-7 |
2D Structure
- Rocilinostat (ACY-1215)
Catalog No.:BCC2144
CAS No.:1316214-52-4
- ITF2357 (Givinostat)
Catalog No.:BCC2150
CAS No.:732302-99-7
- PCI-24781 (CRA-024781)
Catalog No.:BCC2155
CAS No.:783355-60-2
- JNJ-26481585
Catalog No.:BCC2147
CAS No.:875320-29-9
- Pracinostat (SB939)
Catalog No.:BCC2152
CAS No.:929016-96-6
- AR-42 (OSU-HDAC42)
Catalog No.:BCC2161
CAS No.:935881-37-1
Quality Control & MSDS
3D structure
Package In Stock
Number of papers citing our products
Cas No. | 143896-17-7 | SDF | Download SDF |
PubChem ID | 16133821 | Appearance | Powder |
Formula | C94H145N23O24 | M.Wt | 1981.33 |
Type of Compound | N/A | Storage | Desiccate at -20°C |
Solubility | Soluble to 1 mg/ml in water | ||
Sequence | GWTLNSAGYLLGPPPALALA (Modifications: Ala-20 = C-terminal amide) | ||
SMILES | CC(C)CC(C(=O)NC(C)C(=O)NC(CC(C)C)C(=O)NC(C)C(=O)N)NC(=O)C(C)NC(=O)C1CCCN1C(=O)C2CCCN2C(=O)C3CCCN3C(=O)CNC(=O)C(CC(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC4=CC=C(C=C4)O)NC(=O)CNC(=O)C(C)NC(=O)C(CO)NC(=O)C(CC(=O)N)NC(=O)C(CC(C)C)NC(=O)C(C(C)O)NC(=O)C(CC5=CNC6=CC=CC=C65)NC(=O)CN | ||
Standard InChIKey | OSGCBUDLRBUEGW-JZCUZNMGSA-N | ||
Standard InChI | InChI=1S/C94H145N23O24/c1-46(2)33-61(82(129)100-44-76(124)115-30-19-24-71(115)93(140)117-32-20-25-72(117)94(141)116-31-18-23-70(116)91(138)104-54(14)81(128)108-63(35-48(5)6)84(131)103-53(13)80(127)107-62(34-47(3)4)83(130)101-51(11)78(97)125)109-85(132)64(36-49(7)8)110-87(134)66(38-56-26-28-58(120)29-27-56)106-75(123)43-99-79(126)52(12)102-90(137)69(45-118)113-88(135)68(40-73(96)121)111-86(133)65(37-50(9)10)112-92(139)77(55(15)119)114-89(136)67(105-74(122)41-95)39-57-42-98-60-22-17-16-21-59(57)60/h16-17,21-22,26-29,42,46-55,61-72,77,98,118-120H,18-20,23-25,30-41,43-45,95H2,1-15H3,(H2,96,121)(H2,97,125)(H,99,126)(H,100,129)(H,101,130)(H,102,137)(H,103,131)(H,104,138)(H,105,122)(H,106,123)(H,107,127)(H,108,128)(H,109,132)(H,110,134)(H,111,133)(H,112,139)(H,113,135)(H,114,136)/t51-,52-,53-,54-,55+,61-,62-,63-,64-,65-,66-,67-,68-,69-,70-,71-,72-,77-/m0/s1 | ||
General tips | For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months. We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months. Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it. |
||
About Packaging | 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial. 2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial. 3. Try to avoid loss or contamination during the experiment. |
||
Shipping Condition | Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request. |
Description | Potent, non-selective galanin receptor antagonist (Ki values are 1.82 and 5.1 nM at GAL1 and GAL2 respectively) that inhibits galanin (1-29) binding in rat brain in vitro (IC50 = 3 - 15 nM). Attenuates the antidepressant effects of fluoxetine and blocks galanin-induced food intake in vivo. Also exhibits weak partial agonist activity at peripheral GAL2 receptors at doses > 100 nM. |
M40 Dilution Calculator
M40 Molarity Calculator
Calcutta University
University of Minnesota
University of Maryland School of Medicine
University of Illinois at Chicago
The Ohio State University
University of Zurich
Harvard University
Colorado State University
Auburn University
Yale University
Worcester Polytechnic Institute
Washington State University
Stanford University
University of Leipzig
Universidade da Beira Interior
The Institute of Cancer Research
Heidelberg University
University of Amsterdam
University of Auckland
TsingHua University
The University of Michigan
Miami University
DRURY University
Jilin University
Fudan University
Wuhan University
Sun Yat-sen University
Universite de Paris
Deemed University
Auckland University
The University of Tokyo
Korea University
M40 is a potent, non-selective galanin receptor antagonist. Sequence: Gly-Trp-Thr-Leu-Asn-Ser-Ala-Gly-Tyr-Leu-Leu-Gly-Pro-Pro-Pro-Ala-Leu-Ala-Leu-Ala-NH2.
In Vitro:M40 (1 μM) displaces [mono[125IJodo-Tyr26]galanin from binding sites in the hippocampus, hypothalamus, and spinal cord. M40 has a lower affinity than galanin for all membranes. The IC50 values are 6 nM in the hippocampus, 15 nM in the hypothalamus, 12 nM in the spinal cord, and 3 nM in the insulinoma cells. M40 (1 μM) completely blocks 125I-labeled galanin-binding sites[1].
References:
[1]. Bartfai T, et al. Galanin-receptor ligand M40 peptide distinguishes between putative galanin-receptor subtypes. Proc Natl Acad Sci U S A. 1993 Dec 1;90(23):11287-91.
- Elacridar hydrochloride
Catalog No.:BCC1547
CAS No.:143851-98-3
- CC-401 hydrochloride
Catalog No.:BCC1458
CAS No.:1438391-30-0
- 2,24-Dihydroxyursolic acid
Catalog No.:BCN6244
CAS No.:143839-02-5
- Fmoc-Trp(Boc)-OH
Catalog No.:BCC3558
CAS No.:143824-78-6
- 22-Dehydroclerosterol glucoside
Catalog No.:BCN6243
CAS No.:143815-99-0
- 13-Epimanool
Catalog No.:BCN4862
CAS No.:1438-62-6
- SB 200646 hydrochloride
Catalog No.:BCC5751
CAS No.:143797-62-0
- 3-O-Coumaroylasiatic acid
Catalog No.:BCN7132
CAS No.:143773-52-8
- (RS)-Abscisic acid
Catalog No.:BCN8353
CAS No.:14375-45-2
- PACAP 6-38
Catalog No.:BCC7611
CAS No.:143748-18-9
- Pyrazine-2-carbaldehyde
Catalog No.:BCN2565
CAS No.:5780-66-5
- Kaempferol 3,4,7-triacetate
Catalog No.:BCN6242
CAS No.:143724-69-0
- CB-839
Catalog No.:BCC5493
CAS No.:1439399-58-2
- Jaceidin triacetate
Catalog No.:BCN6245
CAS No.:14397-69-4
- CTX0294885
Catalog No.:BCC6396
CAS No.:1439934-41-4
- Sodium barbital
Catalog No.:BCN2160
CAS No.:144-02-5
- Sodium bicarbonate
Catalog No.:BCC7584
CAS No.:144-55-8
- Oxalic acid
Catalog No.:BCN8515
CAS No.:144-62-7
- Zeaxanthin
Catalog No.:BCN2380
CAS No.:144-68-3
- Sulfathiazole sodium
Catalog No.:BCC5207
CAS No.:144-74-1
- Sulfamethizole
Catalog No.:BCC4856
CAS No.:144-82-1
- Sulfapyridine
Catalog No.:BCC4729
CAS No.:144-83-2
- Sodium Nitroprusside
Catalog No.:BCC4844
CAS No.:14402-89-2
- BRD73954
Catalog No.:BCC5652
CAS No.:1440209-96-0
Evaluation of Liquid-Based Swab Transport Systems against the New Approved CLSI M40-A2 Standard.[Pubmed:26842703]
J Clin Microbiol. 2016 Apr;54(4):1152-6.
Following revised information pertaining to newer swab types and testing protocols in the new CLSI M40-A2 standard, we evaluated three liquid swab transport systems for the recovery of aerobic, anaerobic, and fastidious organisms at room temperature and at 4 degrees C. All tested liquid swab transport systems were fully compliant with the M40-A2 standard, with acceptable performance at both temperatures after the full specified holding period, using both qualitative (roll-plate) and quantitative (swab elution) methods.
Effects of the Galanin Receptor Antagonist M40 on Cardiac Function and Remodeling in Rats with Heart Failure.[Pubmed:26177027]
Cardiovasc Ther. 2015 Oct;33(5):288-93.
BACKGROUND: Sympathetic activation and parasympathetic withdrawal are important characteristics of heart failure. Recent studies demonstrate that galanin reduces the discharge of acetylcholine and inhibits vagal bradycardia by acting on galanin receptor type 1 (GalR1). We speculated that blocking GalR1 is beneficial for heart failure. METHODS: Rats with heart failure were induced by myocardial infarction. The rats were injected intraperitoneally with galanin receptor antagonist M40 solution (30 nmol/kg) or saline for 4 weeks. Cardiac function was assessed by echocardiography and brain natriuretic peptide (BNP) in plasma. The ratio of heart weight to body weight (HW/BW), hematoxylin-eosin (HE), and Masson trichrome stain was used to evaluate cardiac remodeling. Tumor necrosis factor-alpha (TNF-alpha), interleukin 6 (IL-6) in plasma, and sarco(endo)plasmic reticulum Ca(2+) -ATPase (SERCA2) in heart tissue were detected to confirm the mechanism of the cardioprotection effect. RESULTS: Compared with rats injected with saline, M40 effectively improved cardiac function of contraction; decreased BNP, IL-6, and HW/BW (all P < 0.05); attenuated cardiac fibrosis; and upregulated SERCA2 (P < 0.05). CONCLUSION: M40 improves cardiac function and attenuates remodeling, suggesting that galanin receptor antagonist may be a potential therapeutic agent for HF.
Optimization of Herbicidin A Production in Submerged Culture of Streptomyces scopuliridis M40.[Pubmed:28237998]
J Microbiol Biotechnol. 2017 May 28;27(5):947-955.
Herbicidin A is a potent herbicide against dicotyledonous plants as well as an antibiotic against phytopathogens. In this study, fermentation parameters for herbicidin A production in submerged culture of Streptomyces scopuliridis M40 were investigated. The herbicidin A concentration varied with the C/N ratio. High C/N ratios (>4) resulted in a herbicidin A production of more than 900 mg/l, whereas maximally 600 mg/l was obtained at ratios between 1 and 3.5. In 5-L batch fermentation, there was a positive correlation between the oxygen uptake rate (OUR) and herbicidin A production. Once the OUR increased, the substrate consumption rate increased, leading to an increase in volumetric productivity. Mechanical shear force affected the hyphal morphology and OUR. When the medium value of hyphal size ranged from 150 to 180 mum, high volumetric production of herbicidin A was obtained with OUR values >137 mg O2/l.h. The highest herbicidin A concentration of 956.6 mg/l was obtained at 500 rpm, and coincided with the highest relative abundance of hyphae of 100-200 mum length and the highest OUR during cultivation. Based on a constant impeller tip speed, which affects hyphal morphology, herbicidin A production was successfully scaled up from a 5-L jar to a 500-L pilot vessel.
[Efficiency of the influenza A and B viruses isolation from nasopharyngeal swabs taken in the test tubes Sigma-Virocult (M40 Compliant, Sigma Virocult) and Virocult (M40 Compliant, Virocult) in 2010-2011 epidemic season].[Pubmed:24006633]
Vopr Virusol. 2013 May-Jun;58(3):42-5.
The goal of this work was to compare the efficiency of the influenza A and B viruses Isolated during 2010-2011 epidemic season. The clinical samples were taken in the test tubes with the transport medium on the.basis of the medium EMEM and commercial test tubes Sigma-Virocult (M40 Compliant, Sigma Virocult) and Virocult (M40 Compliant, Virocult). The results of this work demonstrated higher efficiency of influenza A and B viruses isolation from nasopharyngeal swabs of the patients taken in the test tubes Sigma-Virocult (M40 Compliant, Sigma Virocult) and Virocult (M40 Compliant, Virocult) with the transport medium as compared with the efficiency of influenza strains isolation from nasopharyngeal swabs taken in test tubes with the medium EMEM with respect to all estimated indicators: efficiency of isolation, a passage of isolation and the titer of isolates. The possibility of the long-term storage of a clinical material at room temperature and at 4 degrees C was confirmed, without resorting to freezing, which is significant in the absence of the necessary equipment.