Home >> Research Area >>Natural Products>> (RS)-Abscisic acid

(RS)-Abscisic acid

CAS# 14375-45-2

(RS)-Abscisic acid

2D Structure

Catalog No. BCN8353----Order now to get a substantial discount!

Product Name & Size Price Stock
(RS)-Abscisic acid: 5mg $17 In Stock
(RS)-Abscisic acid: 10mg Please Inquire In Stock
(RS)-Abscisic acid: 20mg Please Inquire Please Inquire
(RS)-Abscisic acid: 50mg Please Inquire Please Inquire
(RS)-Abscisic acid: 100mg Please Inquire Please Inquire
(RS)-Abscisic acid: 200mg Please Inquire Please Inquire
(RS)-Abscisic acid: 500mg Please Inquire Please Inquire
(RS)-Abscisic acid: 1000mg Please Inquire Please Inquire
Related Products

Quality Control of (RS)-Abscisic acid

3D structure

Package In Stock

(RS)-Abscisic acid

Number of papers citing our products

Chemical Properties of (RS)-Abscisic acid

Cas No. 14375-45-2 SDF Download SDF
PubChem ID 5375199 Appearance White crystalline powder
Formula C15H20O4 M.Wt 264.32
Type of Compound N/A Storage Desiccate at -20°C
Solubility Soluble in Chloroform,Dichloromethane,Ethyl Acetate,DMSO,Acetone,etc.
Chemical Name (2Z,4E)-5-(1-hydroxy-2,6,6-trimethyl-4-oxocyclohex-2-en-1-yl)-3-methylpenta-2,4-dienoic acid
SMILES CC1=CC(=O)CC(C1(C=CC(=CC(=O)O)C)O)(C)C
Standard InChIKey JLIDBLDQVAYHNE-LXGGSRJLSA-N
Standard InChI InChI=1S/C15H20O4/c1-10(7-13(17)18)5-6-15(19)11(2)8-12(16)9-14(15,3)4/h5-8,19H,9H2,1-4H3,(H,17,18)/b6-5+,10-7-
General tips For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months.
We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months.
Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it.
About Packaging 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial.
2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial.
3. Try to avoid loss or contamination during the experiment.
Shipping Condition Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request.

(RS)-Abscisic acid Dilution Calculator

Concentration (start)
x
Volume (start)
=
Concentration (final)
x
Volume (final)
 
 
 
C1
V1
C2
V2

calculate

(RS)-Abscisic acid Molarity Calculator

Mass
=
Concentration
x
Volume
x
MW*
 
 
 
g/mol

calculate

Preparing Stock Solutions of (RS)-Abscisic acid

1 mg 5 mg 10 mg 20 mg 25 mg
1 mM 3.7833 mL 18.9165 mL 37.8329 mL 75.6659 mL 94.5823 mL
5 mM 0.7567 mL 3.7833 mL 7.5666 mL 15.1332 mL 18.9165 mL
10 mM 0.3783 mL 1.8916 mL 3.7833 mL 7.5666 mL 9.4582 mL
50 mM 0.0757 mL 0.3783 mL 0.7567 mL 1.5133 mL 1.8916 mL
100 mM 0.0378 mL 0.1892 mL 0.3783 mL 0.7567 mL 0.9458 mL
* Note: If you are in the process of experiment, it's necessary to make the dilution ratios of the samples. The dilution data above is only for reference. Normally, it's can get a better solubility within lower of Concentrations.

Organizitions Citing Our Products recently

 
 
 

Calcutta University

University of Minnesota

University of Maryland School of Medicine

University of Illinois at Chicago

The Ohio State University

University of Zurich

Harvard University

Colorado State University

Auburn University

Yale University

Worcester Polytechnic Institute

Washington State University

Stanford University

University of Leipzig

Universidade da Beira Interior

The Institute of Cancer Research

Heidelberg University

University of Amsterdam

University of Auckland
TsingHua University
TsingHua University
The University of Michigan
The University of Michigan
Miami University
Miami University
DRURY University
DRURY University
Jilin University
Jilin University
Fudan University
Fudan University
Wuhan University
Wuhan University
Sun Yat-sen University
Sun Yat-sen University
Universite de Paris
Universite de Paris
Deemed University
Deemed University
Auckland University
Auckland University
The University of Tokyo
The University of Tokyo
Korea University
Korea University
Featured Products
New Products
 

References on (RS)-Abscisic acid

Ethylene signaling cross-talk with other hormones in Arabidopsis thaliana exposed to contrasting phosphate availability: Differential effects in roots, leaves and fruits.[Pubmed:29758376]

J Plant Physiol. 2018 Jul;226:114-122.

Ethylene signaling plays a major role in the regulation of plant growth, but its cross-talk with other phytohormones is still poorly understood. Here, we investigated whether or not a defect in ethylene signaling, particularly in the ETHYLENE INSENSITIVE3 (EIN3) transcription factor, alters plant growth and influences the contents of other phytohormones. With this aim, a hormonal profiling approach using ultrahigh performance liquid chromatography coupled to tandem mass spectrometry (UHPLC-MS/MS) was used to unravel organ-specific responses (in roots, leaves and fruits) in the ein3-1 mutant and wild-type A. thaliana plants exposed to contrasting phosphate (Pi) availability. A defect in ethylene signaling in the ein3-1 mutant increased the biomass of roots, leaves and fruits, both at 0.5mM and 1mM Pi, thus indicating the growth-inhibitory role of ethylene in all tested organs. The hormonal profiling in roots revealed a cross-talk between ethylene signaling and other phytohormones, as indicated by increases in the contents of auxin, gibberellins and the stress-related hormones, abscisic acid, salicylic acid and jasmonic acid. The ein3-1 mutant also showed increased cytokinin contents in leaves. Reduced Pi availability (from 1mM to 0.5mM Pi) affected fruit growth, but not root and leaf growth, thus indicating mild Pi deficiency. It is concluded that ethylene signaling plays a major role in the modulation of plant growth in A. thaliana and that the ein3-1 mutant is not only altered in ethylene signaling but in the contents of several phytohormones in an organ-specific manner, thus indicating a hormonal cross-talk.

Abscisic acid prevents pollen abortion under high-temperature stress by mediating sugar metabolism in rice spikelets.[Pubmed:29766507]

Physiol Plant. 2019 Mar;165(3):644-663.

Heat stress at the pollen mother cell (PMC) meiotic stage leads to pollen sterility in rice, in which the reactive oxygen species (ROS) and sugar homeostasis are always adversely affected. This damage is reversed by abscisic acid (ABA), but the mechanisms underlying the interactions among the ABA, sugar metabolism, ROS and heat shock proteins in rice spikelets under heat stress are unclear. Two rice genotypes, Zhefu802 (a recurrent parent) and fgl (its near-isogenic line) were subjected to heat stress of 40 degrees C after pre-foliage sprayed with ABA and its biosynthetic inhibitor fluridone at the meiotic stage of PMC. The results revealed that exogenous application of ABA reduced pollen sterility caused by heat stress. This was achieved through various means, including: increased levels of soluble sugars, starch and non-structural carbohydrates, markedly higher relative expression levels of heat shock proteins (HSP24.1 and HSP71.1) and genes related to sugar metabolism and transport, such as sucrose transporters (SUT) genes, sucrose synthase (SUS) genes and invertase (INV) genes as well as increased antioxidant activities and increased content of adenosine triphosphate and endogenous ABA in spikelets. In short, exogenous application of ABA prior to heat stress enhanced sucrose transport and accelerated sucrose metabolism to maintain the carbon balance and energy homeostasis, thus ABA contributed to heat tolerance in rice.

An UHPLC-MS/MS Method for Target Profiling of Stress-Related Phytohormones.[Pubmed:29761439]

Methods Mol Biol. 2018;1778:183-192.

The methodology described here represents an improved strategy for analysis of a broad range of stress-related plant hormones including jasmonates, salicylic acid, abscisic acid, and auxin metabolites. The method conditions are optimized in order to reduce the background effect of complicated plant matrix, allow effective preconcentration and thus perform highly sensitive profiling of multiple plant hormones by ultrahigh performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS).

The Role of Plant Abiotic Factors on the Interactions Between Cnaphalocrocis medinalis (Lepidoptera: Crambidae) and its Host Plant.[Pubmed:29762698]

Environ Entomol. 2018 Aug 11;47(4):857-866.

Atmospheric temperature increases along with increasing atmospheric CO2 concentration. This is a major concern for agroecosystems. Although the impact of an elevated temperature or increased CO2 has been widely reported, there are few studies investigating the combined effect of these two environmental factors on plant-insect interactions. In this study, plant responses (phenological traits, defensive enzyme activity, secondary compounds, defense-related gene expression and phytohormone) of Cnaphalocrocis medinalis (Guenee) (Lepidoptera: Pyralidae) -susceptible and resistant rice under various conditions (environment, soil type, variety, C. medinalis infestation) were used to examine the rice-C. medinalis interaction. The results showed that leaf chlorophyll content and trichome density in rice were variety-dependent. Plant defensive enzyme activities were affected environment, variety, or C. medinalis infestation. In addition, total phenolic content of rice leaves was decreased by elevated CO2 and temperature and C. medinalis infestation. Defense-related gene expression patterns were affected by environment, soil type, or C. medinalis infestation. Abscisic acid and salicylic acid content were decreased by C. medinalis infestation. However, jasmonic acid content was increased by C. medinalis infestation. Furthermore, under elevated CO2 and temperature, rice plants had higher abscisic acid content than plants under ambient conditions. The adult morphological traits of C. medinalis also were affected by environment. Under elevated CO2 and temperature, C. medinalis adults had greater body length in the second and third generations. Taken together these results indicated that elevated CO2 and temperature not only affects plants but also the specialized insects that feed on them.

Stomatal Closure and SA-, JA/ET-Signaling Pathways Are Essential for Bacillus amyloliquefaciens FZB42 to Restrict Leaf Disease Caused by Phytophthora nicotianae in Nicotiana benthamiana.[Pubmed:29755447]

Front Microbiol. 2018 Apr 27;9:847.

Bacillus amyloliquefaciens FZB42 is a plant growth-promoting rhizobacterium that induces resistance to a broad spectrum of pathogens. This study analyzed the mechanism by which FZB42 restricts leaf disease caused by Phytophthora nicotianae in Nicotiana benthamiana. The oomycete foliar pathogen P. nicotianae is able to reopen stomata which had been closed by the plant innate immune response to initiate penetration and infection. Here, we showed that root colonization by B. amyloliquefaciens FZB42 restricted pathogen-mediated stomatal reopening in N. benthamiana. Abscisic acid (ABA) and salicylic acid (SA)-regulated pathways mediated FZB42-induced stomatal closure after pathogen infection. Moreover, the defense-related genes PR-1a, LOX, and ERF1, involved in the SA and jasmonic acid (JA)/ethylene (ET) signaling pathways, respectively, were overexpressed, and levels of the hormones SA, JA, and ET increased in the leaves of B. amyloliquefaciens FZB42-treated wild type plants. Disruption of one of these three pathways in N. benthamiana plants increased susceptibility to the pathogen. These suggest that SA- and JA/ET-dependent signaling pathways were important in plant defenses against the pathogen. Our data thus explain a biocontrol mechanism of soil rhizobacteria in a plant.

The NAC Transcription Factor SlNAP2 Regulates Leaf Senescence and Fruit Yield in Tomato.[Pubmed:29760199]

Plant Physiol. 2018 Jul;177(3):1286-1302.

Leaf senescence is an essential physiological process in plants that supports the recycling of nitrogen and other nutrients to support the growth of developing organs, including young leaves, seeds, and fruits. Thus, the regulation of senescence is crucial for evolutionary success in wild populations and for increasing yield in crops. Here, we describe the influence of a NAC transcription factor, SlNAP2 (Solanum lycopersicum NAC-like, activated by Apetala3/Pistillata), that controls both leaf senescence and fruit yield in tomato (S. lycopersicum). SlNAP2 expression increases during age-dependent and dark-induced leaf senescence. We demonstrate that SlNAP2 activates SlSAG113 (S. lycopersicum SENESCENCE-ASSOCIATED GENE113), a homolog of Arabidopsis (Arabidopsis thaliana) SAG113, chlorophyll degradation genes such as SlSGR1 (S. lycopersicum senescence-inducible chloroplast stay-green protein 1) and SlPAO (S. lycopersicum pheide a oxygenase), and other downstream targets by directly binding to their promoters, thereby promoting leaf senescence. Furthermore, SlNAP2 directly controls the expression of genes important for abscisic acid (ABA) biosynthesis, S. lycopersicum 9-cis-epoxycarotenoid dioxygenase 1 (SlNCED1); transport, S. lycopersicum ABC transporter G family member 40 (SlABCG40); and degradation, S. lycopersicum ABA 8'-hydroxylase (SlCYP707A2), indicating that SlNAP2 has a complex role in establishing ABA homeostasis during leaf senescence. Inhibiting SlNAP2 expression in transgenic tomato plants impedes leaf senescence but enhances fruit yield and sugar content likely due to prolonged leaf photosynthesis in aging tomato plants. Our data indicate that SlNAP2 has a central role in controlling leaf senescence and fruit yield in tomato.

Keywords:

(RS)-Abscisic acid,14375-45-2,Natural Products, buy (RS)-Abscisic acid , (RS)-Abscisic acid supplier , purchase (RS)-Abscisic acid , (RS)-Abscisic acid cost , (RS)-Abscisic acid manufacturer , order (RS)-Abscisic acid , high purity (RS)-Abscisic acid

Online Inquiry for:

      Fill out the information below

      • Size:Qty: - +

      * Required Fields

                                      Result: