Home >> Research Area >>GPCR/G protein>>Ghrelin Receptors>> [Des-octanoyl]-Ghrelin (human)

[Des-octanoyl]-Ghrelin (human)

Major circulating form of ghrelin; devoid of activity at ghrelin receptor but is active in vivo CAS# 313951-59-6

[Des-octanoyl]-Ghrelin (human)

Catalog No. BCC7304----Order now to get a substantial discount!

Product Name & Size Price Stock
[Des-octanoyl]-Ghrelin (human): 5mg $1357 In Stock
[Des-octanoyl]-Ghrelin (human): 10mg Please Inquire In Stock
[Des-octanoyl]-Ghrelin (human): 20mg Please Inquire Please Inquire
[Des-octanoyl]-Ghrelin (human): 50mg Please Inquire Please Inquire
[Des-octanoyl]-Ghrelin (human): 100mg Please Inquire Please Inquire
[Des-octanoyl]-Ghrelin (human): 200mg Please Inquire Please Inquire
[Des-octanoyl]-Ghrelin (human): 500mg Please Inquire Please Inquire
[Des-octanoyl]-Ghrelin (human): 1000mg Please Inquire Please Inquire
Related Products

Quality Control of [Des-octanoyl]-Ghrelin (human)

Number of papers citing our products

Chemical structure

[Des-octanoyl]-Ghrelin (human)

3D structure

Chemical Properties of [Des-octanoyl]-Ghrelin (human)

Cas No. 313951-59-6 SDF Download SDF
PubChem ID 90472032 Appearance Powder
Formula C141H235N47O41 M.Wt 3244.51
Type of Compound N/A Storage Desiccate at -20°C
Solubility Soluble to 1 mg/ml in water
Sequence GSSFLSPEHQRVQQRKESKKPPAKLQPR
Chemical Name (4S)-4-[[(2S)-1-[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[(2-aminoacetyl)amino]-3-hydroxypropanoyl]amino]-3-hydroxypropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]-3-hydroxypropanoyl]pyrrolidine-2-carbonyl]amino]-5-[[(2S)-1-[[(2S)-5-amino-1-[[(2S)-1-[[(2S)-1-[[(2S)-5-amino-1-[[(2S)-5-amino-1-[[(2S)-1-[[(2S)-6-amino-1-[[(2S)-1-[[(2S)-1-[[(2S)-6-amino-1-[[(2S)-6-amino-1-[(2S)-2-[(2S)-2-[[1-[[(2S)-6-amino-1-[[(2S)-1-[[(2S)-5-amino-1-[(2S)-2-[[(1S)-4-carbamimidamido-1-carboxybutyl]carbamoyl]pyrrolidin-1-yl]-1,5-dioxopentan-2-yl]amino]-4-methyl-1-oxopentan-2-yl]amino]-1-oxohexan-2-yl]amino]-1-oxopropan-2-yl]carbamoyl]pyrrolidine-1-carbonyl]pyrrolidin-1-yl]-1-oxohexan-2-yl]amino]-1-oxohexan-2-yl]amino]-3-hydroxy-1-oxopropan-2-yl]amino]-4-carboxy-1-oxobutan-2-yl]amino]-1-oxohexan-2-yl]amino]-5-carbamimidamido-1-oxopentan-2-yl]amino]-1,5-dioxopentan-2-yl]amino]-1,5-dioxopentan-2-yl]amino]-3-methyl-1-oxobutan-2-yl]amino]-5-carbamimidamido-1-oxopentan-2-yl]amino]-1,5-dioxopentan-2-yl]amino]-3-(1H-imidazol-4-yl)-1-oxopropan-2-yl]amino]-5-oxopentanoic acid
SMILES CC(C)CC(C(=O)NC(CCC(=O)N)C(=O)N1CCCC1C(=O)NC(CCCNC(=N)N)C(=O)O)NC(=O)C(CCCCN)NC(=O)C(C)NC(=O)C2CCCN2C(=O)C3CCCN3C(=O)C(CCCCN)NC(=O)C(CCCCN)NC(=O)C(CO)NC(=O)C(CCC(=O)O)NC(=O)C(CCCCN)NC(=O)C(CCCNC(=N)N)NC(=O)C(CCC(=O)N)NC(=O)C(CCC(=O)N)NC(=O)C(C(C)C)NC(=O)C(CCCNC(=N)N)NC(=O)C(CCC(=O)N)NC(=O)C(CC4=CNC=N4)NC(=O)C(CCC(=O)O)NC(=O)C5CCCN5C(=O)C(CO)NC(=O)C(CC(C)C)NC(=O)C(CC6=CC=CC=C6)NC(=O)C(CO)NC(=O)C(CO)NC(=O)CN
Standard InChIKey BGHSOEHUOOAYMY-QIGGUMDYSA-N
Standard InChI InChI=1S/C141H235N47O41/c1-73(2)62-92(123(213)175-90(42-48-107(150)196)135(225)185-58-22-37-102(185)132(222)176-91(138(228)229)34-21-57-160-141(155)156)177-116(206)79(28-11-15-51-142)164-112(202)76(7)162-130(220)100-35-24-60-187(100)137(227)103-38-25-61-188(103)134(224)89(31-14-18-54-145)174-115(205)81(30-13-17-53-144)168-128(218)97(69-190)181-121(211)87(43-49-109(198)199)170-113(203)80(29-12-16-52-143)165-114(204)82(32-19-55-158-139(151)152)166-117(207)84(39-45-104(147)193)169-119(209)86(41-47-106(149)195)173-133(223)111(75(5)6)184-122(212)83(33-20-56-159-140(153)154)167-118(208)85(40-46-105(148)194)171-126(216)95(65-78-67-157-72-161-78)180-120(210)88(44-50-110(200)201)172-131(221)101-36-23-59-186(101)136(226)99(71-192)183-124(214)93(63-74(3)4)178-125(215)94(64-77-26-9-8-10-27-77)179-129(219)98(70-191)182-127(217)96(68-189)163-108(197)66-146/h8-10,26-27,67,72-76,79-103,111,189-192H,11-25,28-66,68-71,142-146H2,1-7H3,(H2,147,193)(H2,148,194)(H2,149,195)(H2,150,196)(H,157,161)(H,162,220)(H,163,197)(H,164,202)(H,165,204)(H,166,207)(H,167,208)(H,168,218)(H,169,209)(H,170,203)(H,171,216)(H,172,221)(H,173,223)(H,174,205)(H,175,213)(H,176,222)(H,177,206)(H,178,215)(H,179,219)(H,180,210)(H,181,211)(H,182,217)(H,183,214)(H,184,212)(H,198,199)(H,200,201)(H,228,229)(H4,151,152,158)(H4,153,154,159)(H4,155,156,160)/t76?,79-,80-,81-,82-,83-,84-,85-,86-,87-,88-,89-,90-,91-,92-,93-,94-,95-,96-,97-,98-,99-,100-,101-,102-,103-,111-/m0/s1
General tips For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months.
We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months.
Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it.
About Packaging 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial.
2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial.
3. Try to avoid loss or contamination during the experiment.
Shipping Condition Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request.

Biological Activity of [Des-octanoyl]-Ghrelin (human)

DescriptionNon-acylated, major circulating isoform of ghrelin that does not bind to the ghrelin receptor (GHS-R1a), nor induce growth hormone release. However, exerts negative inotropic effects in papillary muscle and displays cardioprotective activity. Inhibits cell proliferation in breast and prostate cancer cell lines. Promotes adipogenesis in vivo.

[Des-octanoyl]-Ghrelin (human) Dilution Calculator

Concentration (start)
x
Volume (start)
=
Concentration (final)
x
Volume (final)
 
 
 
C1
V1
C2
V2

calculate

[Des-octanoyl]-Ghrelin (human) Molarity Calculator

Mass
=
Concentration
x
Volume
x
MW*
 
 
 
g/mol

calculate

Organizitions Citing Our Products recently

 
 
 

Calcutta University

University of Minnesota

University of Maryland School of Medicine

University of Illinois at Chicago

The Ohio State University

University of Zurich

Harvard University

Colorado State University

Auburn University

Yale University

Worcester Polytechnic Institute

Washington State University

Stanford University

University of Leipzig

Universidade da Beira Interior

The Institute of Cancer Research

Heidelberg University

University of Amsterdam

University of Auckland
TsingHua University
TsingHua University
The University of Michigan
The University of Michigan
Miami University
Miami University
DRURY University
DRURY University
Jilin University
Jilin University
Fudan University
Fudan University
Wuhan University
Wuhan University
Sun Yat-sen University
Sun Yat-sen University
Universite de Paris
Universite de Paris
Deemed University
Deemed University
Auckland University
Auckland University
The University of Tokyo
The University of Tokyo
Korea University
Korea University
Featured Products
New Products
 

References on [Des-octanoyl]-Ghrelin (human)

Expression of ghrelin and biological activity of specific receptors for ghrelin and des-acyl ghrelin in human prostate neoplasms and related cell lines.[Pubmed:14763915]

Eur J Endocrinol. 2004 Feb;150(2):173-84.

BACKGROUND: Ghrelin, a natural growth hormone secretagogue (GHS), has been identified in prostate carcinoma cell lines. OBJECTIVES: To investigate the presence of ghrelin and its receptors in human prostate tumours and in DU-145, PC-3 and LNCaP prostate carcinoma cell lines, and to assess the effects of ghrelin and its more abundant circulating form, des-octanoyl ghrelin, on cell proliferation. METHODS: Ghrelin and types 1a and 1b GHS receptor (GHS-R) were determined at the mRNA and protein levels by RT-PCR, in situ hybridization, immunohistochemistry and enzyme immunoassay in tissues, cell lines and culture medium. Ghrelin binding was determined by radioreceptor assay. The effects on cell proliferation were evaluated by growth curves. RESULTS: Ghrelin mRNA was found in prostatic carcinomas and benign hyperplasias, but immunohistochemistry was negative. GHS-R1a and 1b mRNAs were absent from carcinomas, but GHS-R1b mRNA was present in 50% of hyperplasias. Ghrelin peptide and mRNA were present in PC-3 cells exclusively, whereas GHS-R1a and 1b mRNAs were expressed in DU-145 cells only. Specific [125I]Tyr4-ghrelin binding was detected in prostate tumour, DU-145 and PC-3 cell membranes and the binding was displaced by ghrelin, synthetic GHS and des-octanoyl ghrelin, which is devoid of GHS-R1a binding affinity and GH-releasing activity. Ghrelin and des-acyl ghrelin inhibited DU-145 cell proliferation, displayed a biphasic effect in PC-3 cells and were ineffective in LNCaP cells. CONCLUSIONS: Specific GHS binding sites, other than GHS-R1a and 1b, are present in human prostatic neoplasms. Ghrelin, in addition to des-acyl ghrelin, exerts different effects on cell proliferation in prostate carcinoma cell lines.

Ghrelin and des-octanoyl ghrelin promote adipogenesis directly in vivo by a mechanism independent of the type 1a growth hormone secretagogue receptor.[Pubmed:14551228]

Endocrinology. 2004 Jan;145(1):234-42.

Ghrelin promotes fat accumulation, despite potent stimulation of the lipolytic hormone, GH. The function of the major circulating isoform of ghrelin, des-octanoyl ghrelin, is unclear, because it does not activate the GH secretagogue receptor (GHS-R1a) and lacks the endocrine activities of ghrelin. We have now addressed these issues by infusing ghrelin, des-octanoyl ghrelin, or synthetic GHS-R1a agonists into three rat models with moderate, severe, or total GH deficiency. We show that in the context of significant GH secretion, the adipogenic effect of systemic ghrelin infusion is pattern dependent. However, this adipogenic action is not mediated by the pituitary hormones. Using a novel unilateral local infusion strategy, we demonstrate that ghrelin promotes bone marrow adipogenesis in vivo by a direct peripheral action. Surprisingly, this effect was also observed with des-octanoyl ghrelin, whereas a potent synthetic GHS-R1a agonist was ineffective. Thus, these adipogenic effects are mediated by a receptor other than GHS-R1a. This is the first in vivo demonstration of a direct adipogenic effect of des-octanoyl ghrelin, a major circulating form of ghrelin that lacks GH-releasing activity. We suggest that the ratio of ghrelin and des-octanoyl ghrelin production could help regulate the balance between adipogenesis and lipolysis in response to nutritional status.

Cardiac effects of ghrelin and its endogenous derivatives des-octanoyl ghrelin and des-Gln14-ghrelin.[Pubmed:12969753]

Eur J Pharmacol. 2003 Aug 22;476(1-2):87-95.

The mechanisms underlying the cardiac activities of synthetic growth hormone secretagogues (GHS) are still unclear. The natural ligand of the GHS receptors, i.e. ghrelin, classically binds the GHS receptor and exerts endocrine actions in acylated forms only; its cardiovascular actions still need to be investigated further. In order to clarify these aspects, we studied the effects of either the synthetic peptidyl GHS hexarelin (1 microM), or the natural ghrelin (50 nM) and the endogenous ghrelin derivatives des-Gln14-ghrelin (1-100 nM) and des-octanoyl ghrelin (50 nM), on the tension developed by guinea pig papillary muscle and on L-type Ca2+ current (ICa) of isolated ventricular cells. The binding of these molecules to ventricular cell membrane homogenates was also studied. We observed that all peptides reduced the tension developed at low frequencies (60-120 beats/min) in a dose-dependent manner. No alteration in cardiac contractility was induced by des-Gln14-ghrelin or des-octanoylated ghrelin when the endocardial endothelium had been removed or after cyclooxygenase blockade. Pretreatment with tyramine (2 microM) had no effect on the inotropic response induced by des-Gln(14)-ghrelin. No significant effect on I(Ca) of isolated ventricular cells was observed in the presence of des-Gln14-ghrelin (100 nM). The order of potency on the tension of papillary muscle was: des-octanoyl ghrelin > ghrelin = des-Gln14-ghrelin > hexarelin. This gradient of potency was consistent with the binding experiments performed on ventricular membranes where either acylated or unacylated ghrelin forms, and hexarelin, recognized a common high-affinity binding site. In conclusion, ghrelin, des-Gln14-ghrelin and des-octanoyl ghrelin, show similar negative inotropic effect on papillary muscle; as des-octanoyl ghrelin is peculiarly devoid of any GH-releasing activity, the cardiotropic action of these molecules is independent of GH release. The binding studies and the experiments performed both on the isolated cells and on papillary muscle after endothelium removal or cyclooxygenase blockade indicate that the cardiotropic action of natural and synthetic ghrelin analogues reflects the interaction with a novel GHS receptor (peculiarly common for ghrelin and des-octanoyl ghrelin), leading to release of cyclooxygenase metabolites from endothelial cells, as indicated by direct measurement of prostacyclin metabolite 6-keto-PGF(1alpha).

Ghrelin and des-acyl ghrelin inhibit cell death in cardiomyocytes and endothelial cells through ERK1/2 and PI 3-kinase/AKT.[Pubmed:12486113]

J Cell Biol. 2002 Dec 23;159(6):1029-37.

Ghrelin is an acyl-peptide gastric hormone acting on the pituitary and hypothalamus to stimulate growth hormone (GH) release, adiposity, and appetite. Ghrelin endocrine activities are entirely dependent on its acylation and are mediated by GH secretagogue (GHS) receptor (GHSR)-1a, a G protein-coupled receptor mostly expressed in the pituitary and hypothalamus, previously identified as the receptor for a group of synthetic molecules featuring GH secretagogue (GHS) activity. Des-acyl ghrelin, which is far more abundant than ghrelin, does not bind GHSR-1a, is devoid of any endocrine activity, and its function is currently unknown. Ghrelin, which is expressed in heart, albeit at a much lower level than in the stomach, also exerts a cardio protective effect through an unknown mechanism, independent of GH release. Here we show that both ghrelin and des-acyl ghrelin inhibit apoptosis of primary adult and H9c2 cardiomyocytes and endothelial cells in vitro through activation of extracellular signal-regulated kinase-1/2 and Akt serine kinases. In addition, ghrelin and des-acyl ghrelin recognize common high affinity binding sites on H9c2 cardiomyocytes, which do not express GHSR-1a. Finally, both MK-0677 and hexarelin, a nonpeptidyl and a peptidyl synthetic GHS, respectively, recognize the common ghrelin and des-acyl ghrelin binding sites, inhibit cell death, and activate MAPK and Akt.These findings provide the first evidence that, independent of its acylation, ghrelin gene product may act as a survival factor directly on the cardiovascular system through binding to a novel, yet to be identified receptor, which is distinct from GHSR-1a.

Keywords:

[Des-octanoyl]-Ghrelin (human),313951-59-6,Natural Products,Ghrelin Receptors, buy [Des-octanoyl]-Ghrelin (human) , [Des-octanoyl]-Ghrelin (human) supplier , purchase [Des-octanoyl]-Ghrelin (human) , [Des-octanoyl]-Ghrelin (human) cost , [Des-octanoyl]-Ghrelin (human) manufacturer , order [Des-octanoyl]-Ghrelin (human) , high purity [Des-octanoyl]-Ghrelin (human)

Online Inquiry for:

      Fill out the information below

      • Size:Qty: - +

      * Required Fields

                                      Result: