Cl-4AS-1Steroidal androgen receptor agonist CAS# 188589-66-4 |
2D Structure
- Narciclasine
Catalog No.:BCN4732
CAS No.:29477-83-6
Quality Control & MSDS
3D structure
Package In Stock
Number of papers citing our products
Cas No. | 188589-66-4 | SDF | Download SDF |
PubChem ID | 18771058 | Appearance | Powder |
Formula | C26H33ClN2O2 | M.Wt | 441.01 |
Type of Compound | N/A | Storage | Desiccate at -20°C |
Solubility | Soluble to 10 mM in DMSO and to 10 mM in ethanol | ||
Chemical Name | N-(2-chlorophenyl)-6,9a,11a-trimethyl-7-oxo-2,3,3a,3b,4,5,5a,9b,10,11-decahydro-1H-indeno[5,4-f]quinoline-1-carboxamide | ||
SMILES | CC12CCC3C(C1CCC2C(=O)NC4=CC=CC=C4Cl)CCC5C3(C=CC(=O)N5C)C | ||
Standard InChIKey | CTVXDPDUOKQBKZ-UHFFFAOYSA-N | ||
Standard InChI | InChI=1S/C26H33ClN2O2/c1-25-14-12-18-16(8-11-22-26(18,2)15-13-23(30)29(22)3)17(25)9-10-19(25)24(31)28-21-7-5-4-6-20(21)27/h4-7,13,15-19,22H,8-12,14H2,1-3H3,(H,28,31) | ||
General tips | For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months. We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months. Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it. |
||
About Packaging | 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial. 2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial. 3. Try to avoid loss or contamination during the experiment. |
||
Shipping Condition | Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request. |
Description | Potent steroidal androgen receptor agonist (IC50 = 12 nM). Mimics the action of 5α-dihydrotestosterone (DHT). Transactivates the mouse mammary tumor virus (MMTV) promoter; represses MMP1 promoter activity. Inhibits 5α-reductase type I and II (IC50 values are 6 and 10 nM respectively). |
Cl-4AS-1 Dilution Calculator
Cl-4AS-1 Molarity Calculator
1 mg | 5 mg | 10 mg | 20 mg | 25 mg | |
1 mM | 2.2675 mL | 11.3376 mL | 22.6752 mL | 45.3504 mL | 56.6881 mL |
5 mM | 0.4535 mL | 2.2675 mL | 4.535 mL | 9.0701 mL | 11.3376 mL |
10 mM | 0.2268 mL | 1.1338 mL | 2.2675 mL | 4.535 mL | 5.6688 mL |
50 mM | 0.0454 mL | 0.2268 mL | 0.4535 mL | 0.907 mL | 1.1338 mL |
100 mM | 0.0227 mL | 0.1134 mL | 0.2268 mL | 0.4535 mL | 0.5669 mL |
* Note: If you are in the process of experiment, it's necessary to make the dilution ratios of the samples. The dilution data above is only for reference. Normally, it's can get a better solubility within lower of Concentrations. |
Calcutta University
University of Minnesota
University of Maryland School of Medicine
University of Illinois at Chicago
The Ohio State University
University of Zurich
Harvard University
Colorado State University
Auburn University
Yale University
Worcester Polytechnic Institute
Washington State University
Stanford University
University of Leipzig
Universidade da Beira Interior
The Institute of Cancer Research
Heidelberg University
University of Amsterdam
University of Auckland
TsingHua University
The University of Michigan
Miami University
DRURY University
Jilin University
Fudan University
Wuhan University
Sun Yat-sen University
Universite de Paris
Deemed University
Auckland University
The University of Tokyo
Korea University
- TFM-4AS-1
Catalog No.:BCC6069
CAS No.:188589-61-9
- SBI-0206965
Catalog No.:BCC3984
CAS No.:1884220-36-3
- Scandoside
Catalog No.:BCN3449
CAS No.:18842-99-4
- Paederosidic acid
Catalog No.:BCN3438
CAS No.:18842-98-3
- MAFP
Catalog No.:BCC7059
CAS No.:188404-10-6
- Pellitorine
Catalog No.:BCN4043
CAS No.:18836-52-7
- Isodomoic acid G
Catalog No.:BCN1839
CAS No.:188346-81-8
- Massonianoside B
Catalog No.:BCN1164
CAS No.:188300-19-8
- Californidine
Catalog No.:BCC8137
CAS No.:18830-99-4
- 8alpha-(2-Methylacryloyloxy)hirsutinolide
Catalog No.:BCN7109
CAS No.:188293-70-1
- (±)-Propionylcarnitine chloride
Catalog No.:BCC6719
CAS No.:18828-58-5
- Methylproamine
Catalog No.:BCC1741
CAS No.:188247-01-0
- GSK3787
Catalog No.:BCC2263
CAS No.:188591-46-0
- 3-hydroxymorindone
Catalog No.:BCN3126
CAS No.:80368-74-7
- 4,5-Di-O-caffeoylquinic acid methyl ester
Catalog No.:BCN6492
CAS No.:188742-80-5
- N-Acetylcaprolactam
Catalog No.:BCC9081
CAS No.:1888-91-1
- SC 560
Catalog No.:BCC7111
CAS No.:188817-13-2
- 8-Glucosyl-5,7-dihydroxy-2-(1-methylpropyl)chromone
Catalog No.:BCN7505
CAS No.:188818-27-1
- Streptozotocin
Catalog No.:BCN3834
CAS No.:18883-66-4
- HX 531
Catalog No.:BCC6082
CAS No.:188844-34-0
- HX 630
Catalog No.:BCC6083
CAS No.:188844-52-2
- DMA
Catalog No.:BCC1532
CAS No.:188860-26-6
- Hydroxytanshinone IIA
Catalog No.:BCN2497
CAS No.:18887-18-8
- Methyl tanshinonate
Catalog No.:BCN2553
CAS No.:18887-19-9
The cellular and molecular effects of the androgen receptor agonist, Cl-4AS-1, on breast cancer cells.[Pubmed:29578828]
Endocr Res. 2018 Aug;43(3):203-214.
PURPOSE: The androgen receptor (AR) has attracted attention in the treatment of breast cancer. Due to the undesirable side effects of AR agonists, attempts have been undertaken to develop selective AR modulators. One of these compounds is Cl-4AS-1. This study examined this compound more closely at the cellular and molecular levels. METHODS: Three different breast cancer cell lines were utilized, namely the luminal MCF-7 cells, the molecular apocrine MDA-MB-453 cells, and the triple negative, basal MDA-MB-231 cells. RESULTS: High and significant concordance between dihydrotestosterone (DHT) and Cl-4AS-1 in regulation of gene expression in MDA-MB-453 cells was found. However, some differences were noted including the expression of AR, which was upregulated by DHT, but not Cl-4AS-1. In addition, both DHT and Cl-4AS-1 caused a similar morphological change and reorganization of the actin structure of MDA-MB-453 cells into a mesenchymal phenotype. Treatment of cells with DHT resulted in induction of proliferation of MCF-7 and MDA-MB-453 cells, but no effect was observed on the growth of MDA-MB-231 cells. On the other hand, increasing doses of Cl-4AS-1 resulted in a dose-dependent inhibition on the growth of the three cell lines. This inhibition was a result of induction of apoptosis whereby Cl-4AS-1 caused a block in entry of cells into the S-phase followed by DNA degradation. CONCLUSIONS: These results indicate that although Cl-4AS-1 has characteristics of classical AR agonist, it has dissimilar properties that may make it useful in treating breast cancer.
Testosterone Rapidly Augments Retrograde Endocannabinoid Signaling in Proopiomelanocortin Neurons to Suppress Glutamatergic Input from Steroidogenic Factor 1 Neurons via Upregulation of Diacylglycerol Lipase-alpha.[Pubmed:27871072]
Neuroendocrinology. 2017;105(4):341-356.
Testosterone exerts profound effects on reproduction and energy homeostasis. Like other orexigenic hormones, it increases endocannabinoid tone within the hypothalamic feeding circuitry. Therefore, we tested the hypothesis that testosterone upregulates the expression of diacylglycerol lipase (DAGL)alpha in the hypothalamic arcuate nucleus (ARC) to increase energy intake via enhanced endocannabinoid-mediated retrograde inhibition of anorexigenic proopiomelanocortin (POMC) neurons. Energy intake, meal patterns, and energy expenditure were evaluated in orchidectomized, male guinea pigs treated subcutaneously with testosterone propionate (TP; 400 mug) or its sesame oil vehicle (0.1 mL). TP rapidly increased energy intake, meal size, O2 consumption, CO2 production, and metabolic heat production, all of which were antagonized by prior administration of the DAGL inhibitor orlistat (3 mug) into the third ventricle. These orlistat-sensitive, TP-induced increases in energy intake and expenditure were temporally associated with a significant elevation in ARC DAGLalpha expression. Electrophysiological recordings in hypothalamic slices revealed that TP potentiated depolarization-induced suppression of excitatory glutamatergic input onto identified ARC POMC neurons, which was also abolished by orlistat (3 muM), the CB1 receptor antagonist AM251 (1 muM), and the AMP-activated protein kinase inhibitor compound C (30 muM) and simulated by transient bath application of the dihydrotestosterone mimetic Cl-4AS-1 (100 nM) and testosterone-conjugated bovine serum albumin (100 nM). Thus, testosterone boosts DAGLalpha expression to augment retrograde, presynaptic inhibition of glutamate release onto ARC POMC neurons that, in turn, increases energy intake and expenditure. These studies advance our understanding of how androgens work within the hypothalamic feeding circuitry to affect changes in energy balance.
Identification of anabolic selective androgen receptor modulators with reduced activities in reproductive tissues and sebaceous glands.[Pubmed:19846549]
J Biol Chem. 2009 Dec 25;284(52):36367-76.
Androgen replacement therapy is a promising strategy for the treatment of frailty; however, androgens pose risks for unwanted effects including virilization and hypertrophy of reproductive organs. Selective Androgen Receptor Modulators (SARMs) retain the anabolic properties of androgens in bone and muscle while having reduced effects in other tissues. We describe two structurally similar 4-aza-steroidal androgen receptor (AR) ligands, Cl-4AS-1, a full agonist, and TFM-4AS-1, which is a SARM. TFM-4AS-1 is a potent AR ligand (IC(50), 38 nm) that partially activates an AR-dependent MMTV promoter (55% of maximal response) while antagonizing the N-terminal/C-terminal interaction within AR that is required for full receptor activation. Microarray analyses of MDA-MB-453 cells show that whereas Cl-4AS-1 behaves like 5alpha-dihydrotestosterone (DHT), TFM-4AS-1 acts as a gene-selective agonist, inducing some genes as effectively as DHT and others to a lesser extent or not at all. This gene-selective agonism manifests as tissue-selectivity: in ovariectomized rats, Cl-4AS-1 mimics DHT while TFM-4AS-1 promotes the accrual of bone and muscle mass while having reduced effects on reproductive organs and sebaceous glands. Moreover, TFM-4AS-1 does not promote prostate growth and antagonizes DHT in seminal vesicles. To confirm that the biochemical properties of TFM-4AS-1 confer tissue selectivity, we identified a structurally unrelated compound, FTBU-1, with partial agonist activity coupled with antagonism of the N-terminal/C-terminal interaction and found that it also behaves as a SARM. TFM-4AS-1 and FTBU-1 represent two new classes of SARMs and will allow for comparative studies aimed at understanding the biophysical and physiological basis of tissue-selective effects of nuclear receptor ligands.
4-Methyl-3-oxo-4-aza-5alpha-androst-1-ene-17beta-N-aryl-carboxamides: an approach to combined androgen blockade [5alpha-reductase inhibition with androgen receptor binding in vitro].[Pubmed:9219921]
J Steroid Biochem Mol Biol. 1997 Mar;60(5-6):303-9.
4-Aza-5alpha-androstan-3-one 17beta-(N-substituted carboxamides) are potent human type 2 5alpha-reductase (5aR) inhibitors with generally poor binding to the human androgen receptor (hAR). When the 17-amide N-substituent included an aromatic residue, potent dual inhibitors of both type 1 and 2 5aR are produced, but hAR binding remained poor. Tertiary-substituted-17-amides have reduced inhibition of both 5aR isozymes. The addition of an N4-methyl substitutent to the A-ring profoundly increased hAR affinity and the addition of unsaturation to the A-ring (delta1) modestly augmented hAR binding. The unsubstituted carbanilides in the delta1-N4-methyl series show some selectivity for type 1 5aR over the type 2 isozyme, whereas addition of aryl substituents, particularly at the 2-position, increased type 2 5aR binding to provide dual inhibitors with excellent hAR binding, e.g. N-(2-chlorophenyl)-3-oxo-4-methyl-4-aza-5alpha-androst-1-ene-17bet a-carboxamide (9c). Compounds of this type exhibit low nanomolar IC50s for both human 5aR isozymes as well as the human androgen receptor. Kinetic analysis confirms that the prototype 9c displays reversible, competitive inhibition of both human isozymes of 5aR with K(i) values of less than 10 nM. Furthermore, this compound binds to the androgen receptor with an IC50 equal to 8 nM. Compounds in this series are projected to be powerful antagonists of testosterone and dihydrotestosterone action in vivo, with potential utility in the treatment of prostatic carcinoma (PC).