D-IsomentholCAS# 23283-97-8 |
2D Structure
- D-Menthol
Catalog No.:BCN4973
CAS No.:15356-60-2
- DL-Menthol
Catalog No.:BCN5950
CAS No.:15356-70-4
- L-Menthol
Catalog No.:BCN4971
CAS No.:2216-51-5
- Neoisomenthol
Catalog No.:BCC8169
CAS No.:20752-34-5
- Menthol
Catalog No.:BCN9045
CAS No.:89-78-1
Quality Control & MSDS
3D structure
Package In Stock
Number of papers citing our products
Cas No. | 23283-97-8 | SDF | Download SDF |
PubChem ID | 45056 | Appearance | Colorless crystals |
Formula | C10H20O | M.Wt | 156.27 |
Type of Compound | Isoprenoids | Storage | Desiccate at -20°C |
Synonyms | (+)-Isomenthol;Isomenthol | ||
Solubility | Soluble in ethanol and methanol; insoluble in water | ||
Chemical Name | (1S,2R,5R)-5-methyl-2-propan-2-ylcyclohexan-1-ol | ||
SMILES | CC1CCC(C(C1)O)C(C)C | ||
Standard InChIKey | NOOLISFMXDJSKH-BBBLOLIVSA-N | ||
Standard InChI | InChI=1S/C10H20O/c1-7(2)9-5-4-8(3)6-10(9)11/h7-11H,4-6H2,1-3H3/t8-,9-,10+/m1/s1 | ||
General tips | For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months. We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months. Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it. |
||
About Packaging | 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial. 2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial. 3. Try to avoid loss or contamination during the experiment. |
||
Shipping Condition | Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request. |
D-Isomenthol Dilution Calculator
D-Isomenthol Molarity Calculator
1 mg | 5 mg | 10 mg | 20 mg | 25 mg | |
1 mM | 6.3992 mL | 31.9959 mL | 63.9918 mL | 127.9836 mL | 159.9795 mL |
5 mM | 1.2798 mL | 6.3992 mL | 12.7984 mL | 25.5967 mL | 31.9959 mL |
10 mM | 0.6399 mL | 3.1996 mL | 6.3992 mL | 12.7984 mL | 15.998 mL |
50 mM | 0.128 mL | 0.6399 mL | 1.2798 mL | 2.5597 mL | 3.1996 mL |
100 mM | 0.064 mL | 0.32 mL | 0.6399 mL | 1.2798 mL | 1.5998 mL |
* Note: If you are in the process of experiment, it's necessary to make the dilution ratios of the samples. The dilution data above is only for reference. Normally, it's can get a better solubility within lower of Concentrations. |
Calcutta University
University of Minnesota
University of Maryland School of Medicine
University of Illinois at Chicago
The Ohio State University
University of Zurich
Harvard University
Colorado State University
Auburn University
Yale University
Worcester Polytechnic Institute
Washington State University
Stanford University
University of Leipzig
Universidade da Beira Interior
The Institute of Cancer Research
Heidelberg University
University of Amsterdam
University of Auckland
TsingHua University
The University of Michigan
Miami University
DRURY University
Jilin University
Fudan University
Wuhan University
Sun Yat-sen University
Universite de Paris
Deemed University
Auckland University
The University of Tokyo
Korea University
- Gallic acid
Catalog No.:BCN1668
CAS No.:149-91-7
- Scopolamine butylbromide
Catalog No.:BCN5006
CAS No.:149-64-4
- Erythritol
Catalog No.:BCN1664
CAS No.:149-32-6
- Fmoc-Inp-OH
Catalog No.:BCC3266
CAS No.:148928-15-8
- 3-[2-Cyclopropyl-4-(4-fluorophenyl)-3-quinolinyl-2-propenal
Catalog No.:BCC8600
CAS No.:148901-68-2
- Fmoc-L-Arg(Aloc)2-OH
Catalog No.:BCC2564
CAS No.:148893-34-9
- HATU
Catalog No.:BCC2813
CAS No.:148893-10-1
- YM 511
Catalog No.:BCC6002
CAS No.:148869-05-0
- Ivabradine HCl
Catalog No.:BCC4350
CAS No.:148849-67-6
- Rutamarin
Catalog No.:BCN7509
CAS No.:14882-94-1
- Bismuth Subsalicylate
Catalog No.:BCC3739
CAS No.:14882-18-9
- Carboxy-PTIO, potassium salt
Catalog No.:BCC6789
CAS No.:148819-94-7
- Dexrazoxane HCl (ICRF-187, ADR-529)
Catalog No.:BCC1087
CAS No.:149003-01-0
- (S)-WAY 100135 dihydrochloride
Catalog No.:BCC6993
CAS No.:149007-54-5
- H-D-Trp-OMe.HCl
Catalog No.:BCC3118
CAS No.:14907-27-8
- Brusatol
Catalog No.:BCN8278
CAS No.:14907-98-3
- AG 825
Catalog No.:BCC7113
CAS No.:149092-50-2
- Brugine
Catalog No.:BCN1899
CAS No.:14912-30-2
- Cratoxylone
Catalog No.:BCN3875
CAS No.:149155-01-1
- Homaloside D
Catalog No.:BCN1661
CAS No.:149155-19-1
- Eriodictyol chalcone
Catalog No.:BCN8276
CAS No.:14917-41-0
- 3-(2,4-Dihydroxybenzyl)-5-hydroxy-7,8-dimethoxy-6-methylchroman-4-one
Catalog No.:BCN6634
CAS No.:149180-48-3
- Irenolone
Catalog No.:BCN7146
CAS No.:149184-19-0
- CGP 54626 hydrochloride
Catalog No.:BCC6934
CAS No.:149184-21-4
Esters of pyromellitic acid. Part II. Esters of chiral alcohols: para pyromellitate diesters as a novel class of resolving agents and use of pyromellitates as duplicands for chiral purification.[Pubmed:18522418]
J Org Chem. 2008 Jul 4;73(13):4939-48.
Methods are presented for the preparation of pyromellitate esters of chiral terpene alcohols, including d- (3) or l-menthol (4), D-Isomenthol (7), l-borneol (8), or d- (5) or l-isopinocampheol (6). Alcoholysis of PMDA in CH2Cl2/Et3N led to the formation of monoesters (e.g., 18) or diesters (11, 12), as needed, relying on the differential reactivity of the two anhydride groups. The easily isolated para diester (11) crystallized before the meta diester (12) from HOAc. Nicotine (1, 14) was efficiently resolved as 1:1 salts with the menthyl (11a, 11b) or bornyl (11f) para diesters, prototypes of what promises to be a large class of novel resolving agents. Recrystallization of para-di-d-menthyl pyromellitate (11a) greatly improved the chiral purity of the contained d-menthol (3), an example of purification by "duplication". An alternative synthesis of specific diesters took advantage of the easily separated benzyl diesters and their derived acid chlorides (19, 21), with the benzyl esters serving as temporary blocking groups removable by catalytic hydrogenolysis. Pyromellitate tetraesters (26) were prepared by base-catalyzed transesterification of the tetraethyl ester (25). Tri- l-menthyl pyromellitate (27b) was obtained by catalytic hydrogenolysis of benzyl tri-l-menthyl pyromellitate (31b), itself prepared from the alcoholysis of benzyl pyromellitate triacid chloride (30) with l-menthol (4).
Effect of l-menthol on laryngeal receptors.[Pubmed:2022571]
J Appl Physiol (1985). 1991 Feb;70(2):788-93.
We have studied the effect of l-menthol on laryngeal receptors. Experiments have been conducted in 11 anesthetized dogs that breathed through a tracheostomy. We have recorded the activity of 23 laryngeal cold receptors and 19 mechanoreceptors. Constant flows of air, 15-50 ml/s (low) and 100-150 ml/s (high), passing for 10 s through the isolated upper airway in the expiratory direction, lowered laryngeal temperature and activated the cold receptors. This cold-induced discharge promptly ceased upon withdrawal of the airflow. Addition of l-menthol to the airflow evoked, for a similar decrease in temperature, a greater peak activation of the cold receptors than airflow alone (low flows 164%, high flows 111%); statistical significance was reached only for the lower flow. This activity outlasted the cessation of airflow by 30-120 s, even at a time when laryngeal temperature had returned to control (low flow 237%, high flow 307% of similar trials with airflow alone). Four laryngeal cold receptors were also tested with l-menthol added to a warm, humidified airflow that did not change laryngeal temperature; all of them were stimulated with a long-lasting discharge. Nine cold receptors were also tested with d-neomenthol and D-Isomenthol; both isomers stimulated the receptors. None of the 19 mechano-receptors tested was affected by l-menthol. We conclude that l-menthol constitutes a specific stimulant of laryngeal cold receptors and could provide a useful tool for the study of their reflex effects.
The effects of menthol isomers on nasal sensation of airflow.[Pubmed:3370851]
Clin Otolaryngol Allied Sci. 1988 Feb;13(1):25-9.
The effects of inhalation of L-menthol, D-Isomenthol and D-neomenthol, upon nasal resistance and sensation to airflow were investigated in 40 subjects. L-menthol caused a highly significant enhancement of nasal sensation of airflow but despite their great similarity in structure and a similar peppermint smell the isomers D-Isomenthol and D-neomenthol had no effect on nasal sensation of airflow. These findings show that L-menthol has a specific pharmacological action on nasal sensory nerve endings which is not related to its peppermint smell.
Metabolism of Monoterpenes: Conversion of l-Menthone to l-Menthol and d-Neomenthol by Stereospecific Dehydrogenases from Peppermint (Mentha piperita) Leaves.[Pubmed:16662335]
Plant Physiol. 1982 May;69(5):1013-7.
The monoterpene ketone l-menthone is specifically converted to l-menthol and l-menthyl acetate and to d-neomenthol and d-neomenthyl-beta-d-glucoside in mature peppermint (Mentha piperita L. cv. Black Mitcham) leaves. The selectivity of product formation results from compartmentation of the menthol dehydrogenase with the acetyl transferase and that of the neomenthol dehydrogenase with the glucosyl transferase. Soluble enzyme preparations, but not particulate preparations, from mature peppermint leaves catalyzed the NADPH-dependent reduction of l-menthone to both epimeric alcohols, and the two dehydrogenases responsible for these stereospecific transformations were resolved by affinity chromatography on Matrex Gel Red A. Both enzymes have a molecular weight of approximately 35,000, possess a K(m) for NADPH of about 2 x 10(-5)m, are very sensitive to inhibition by thiol-directed reagents, and are not readily reversible. The menthol dehydrogenase showed a pH optimum at 7.5, exhibited a K(m) for l-menthone of about 2.5 x 10(-4)m, and also reduced d-isomenthone to d-neoisomenthol. The neomenthol dehydrogenase showed a pH optimum at 7.6, exhibited a K(m) for l-menthone of about 2.2 x 10(-5)m, and also reduced d-isomenthone to D-Isomenthol. These stereochemically distinct, but otherwise similar, enzymes are of key importance in determining the metabolic fate of menthone in peppermint, and they are probably typical of the class of dehydrogenases thought to be responsible for the metabolism of monoterpene ketones during plant development.