DOB hydrochlorideSelective 5-HT2 agonist CAS# 29705-96-2 |
- ML347
Catalog No.:BCC5331
CAS No.:1062368-49-3
- LDN-212854
Catalog No.:BCC5330
CAS No.:1432597-26-6
- PD 169316
Catalog No.:BCC3969
CAS No.:152121-53-4
- Imperatorin
Catalog No.:BCN5574
CAS No.:482-44-0
Quality Control & MSDS
Number of papers citing our products
Chemical structure
3D structure
Cas No. | 29705-96-2 | SDF | Download SDF |
PubChem ID | 12626562 | Appearance | Powder |
Formula | C11H17BrClNO2 | M.Wt | 310.62 |
Type of Compound | N/A | Storage | Desiccate at -20°C |
Synonyms | 2,5-Dimethoxy-4-bromoamphetamine hydrochloride | ||
Solubility | Soluble to 100 mM in water | ||
Chemical Name | 1-(4-bromo-2,5-dimethoxyphenyl)propan-2-amine;hydrochloride | ||
SMILES | CC(CC1=CC(=C(C=C1OC)Br)OC)N.Cl | ||
Standard InChIKey | SPBBKPOIDQIWDZ-UHFFFAOYSA-N | ||
Standard InChI | InChI=1S/C11H16BrNO2.ClH/c1-7(13)4-8-5-11(15-3)9(12)6-10(8)14-2;/h5-7H,4,13H2,1-3H3;1H | ||
General tips | For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months. We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months. Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it. |
||
About Packaging | 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial. 2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial. 3. Try to avoid loss or contamination during the experiment. |
||
Shipping Condition | Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request. |
Description | Selective 5-HT2 receptor agonist (Ki values are 0.44, 59, 69, 831 and 3700 nM for 5-HT2H, 5-HT2L, 5-HT2C, 5-HT1B and 5-HT1A receptors respectively). Hallucinogenic. |
DOB hydrochloride Dilution Calculator
DOB hydrochloride Molarity Calculator
1 mg | 5 mg | 10 mg | 20 mg | 25 mg | |
1 mM | 3.2194 mL | 16.0968 mL | 32.1937 mL | 64.3874 mL | 80.4842 mL |
5 mM | 0.6439 mL | 3.2194 mL | 6.4387 mL | 12.8775 mL | 16.0968 mL |
10 mM | 0.3219 mL | 1.6097 mL | 3.2194 mL | 6.4387 mL | 8.0484 mL |
50 mM | 0.0644 mL | 0.3219 mL | 0.6439 mL | 1.2877 mL | 1.6097 mL |
100 mM | 0.0322 mL | 0.161 mL | 0.3219 mL | 0.6439 mL | 0.8048 mL |
* Note: If you are in the process of experiment, it's necessary to make the dilution ratios of the samples. The dilution data above is only for reference. Normally, it's can get a better solubility within lower of Concentrations. |
Calcutta University
University of Minnesota
University of Maryland School of Medicine
University of Illinois at Chicago
The Ohio State University
University of Zurich
Harvard University
Colorado State University
Auburn University
Yale University
Worcester Polytechnic Institute
Washington State University
Stanford University
University of Leipzig
Universidade da Beira Interior
The Institute of Cancer Research
Heidelberg University
University of Amsterdam
University of Auckland
TsingHua University
The University of Michigan
Miami University
DRURY University
Jilin University
Fudan University
Wuhan University
Sun Yat-sen University
Universite de Paris
Deemed University
Auckland University
The University of Tokyo
Korea University
- dihydrokaempferol
Catalog No.:BCC8191
CAS No.:5150-32-3
- Oxyresveratrol
Catalog No.:BCN5201
CAS No.:29700-22-9
- Ethynodiol diacetate
Catalog No.:BCC4483
CAS No.:297-76-7
- 2-Aminothiazol-4-acetic acid
Catalog No.:BCC8556
CAS No.:29676-71-9
- 13-Oxo-9E,11E-octadecadienoic acid
Catalog No.:BCN8173
CAS No.:29623-29-8
- Friedelin 3,4-lactone
Catalog No.:BCN6449
CAS No.:29621-75-8
- Gynuramide II
Catalog No.:BCN5200
CAS No.:295803-03-1
- 2-Amino-2',5-dichlorobenzophenone
Catalog No.:BCC8520
CAS No.:2958-36-3
- Sakuranetin
Catalog No.:BCN5199
CAS No.:2957-21-3
- (E)-N-Caffeoylputrescine
Catalog No.:BCC8391
CAS No.:29554-26-5
- Negletein
Catalog No.:BCN8085
CAS No.:29550-13-8
- Olivil
Catalog No.:BCN5198
CAS No.:2955-23-9
- Methyl chlorogenate
Catalog No.:BCC9042
CAS No.:29708-87-0
- Clopidol
Catalog No.:BCC8918
CAS No.:2971-90-6
- Dihydro-β-erythroidine hydrobromide
Catalog No.:BCC7341
CAS No.:29734-68-7
- Apigenin-7-glucuronide
Catalog No.:BCN5326
CAS No.:29741-09-1
- Luteolin-7-O-glucuronide
Catalog No.:BCN5338
CAS No.:29741-10-4
- Loganetin
Catalog No.:BCN5202
CAS No.:29748-10-5
- Altretamine hydrochloride
Catalog No.:BCC4114
CAS No.:2975-00-0
- Altenuene
Catalog No.:BCN7392
CAS No.:29752-43-0
- Teniposide
Catalog No.:BCC3864
CAS No.:29767-20-2
- Nudifloside B
Catalog No.:BCN7474
CAS No.:297740-98-8
- Nudifloside C
Catalog No.:BCN7491
CAS No.:297740-99-9
- Silydianin
Catalog No.:BCN2388
CAS No.:29782-68-1
A pre- and postsynaptic modulatory action of 5-HT and the 5-HT2A, 2C receptor agonist DOB on NMDA-evoked responses in the rat medial prefrontal cortex.[Pubmed:10457188]
Eur J Neurosci. 1999 Aug;11(8):2917-34.
Intracellular recordings were made from pyramidal neurons in layers V and VI of the rat medial prefrontal cortex in slice preparations to investigate the effect of the serotonin 5-HT2A,2C receptor agonist (-)-1-2,5-dimethoxy-4-bromophenol-2-aminopropane (DOB) and 5-hydroxytryptamine (5-HT) on N-methyl-D-aspartate (NMDA)-induced responses. Bath application of either DOB or 5-HT [in the presence of antagonists to 5-HT1A, 5-HT3 and gamma-aminobutytric acid (GABA) receptors] produced a concentration-dependent biphasic modulation of the NMDA responses. They facilitated and inhibited NMDA responses at low (= 1 microM DOB and = 50 microM 5-HT) and higher concentrations, respectively. Both the facilitating and inhibitory action were blocked by the highly selective 5-HT2A receptor antagonist R-(+)-alpha-(2, 3-dimethoxyphenil)-1-[4-fluorophenylethyl]-4-piperidineme thanol (M100907) and the 5-HT2 receptor antagonist ketanserin, thus indicating that both facilitation and inhibition were mediated by the activation of the 5-HT2A receptor subtype. However, the facilitating, but not inhibitory, action of DOB showed a marked desensitization, suggesting that the facilitation and inhibition of NMDA responses resulted from activation of different 5-HT2A receptor subtypes and/or signal-transduction pathways. Indeed, the selective PKC inhibitor chelerythrine and the Ca2+/CaM-KII inhibitor KN-93 prevented the facilitating and inhibitory action of DOB, respectively. We have generated several lines of evidence to indicate the following scenario. Low concentrations of DOB, at presynaptic nerve terminals, markedly enhance NMDA-induced release of excitatory amino acids (EAAs), which then act upon both NMDA and non-NMDA receptors to elicit inward current. The massive inward current masks the postsynaptic inhibitory action of DOB. At higher concentrations, DOB inhibits the release of EAAs and discloses the postsynaptic inhibitory action.
Selectivity of serotonergic drugs for multiple brain serotonin receptors. Role of [3H]-4-bromo-2,5-dimethoxyphenylisopropylamine ([3H]DOB), a 5-HT2 agonist radioligand.[Pubmed:3663239]
Biochem Pharmacol. 1987 Oct 1;36(19):3265-71.
The affinities of putative serotonin receptor agonists and antagonists for 5-HT1A, 5-HT1B, 5-HT1C, and 5-HT2 receptors were assayed using radioligand binding assays. The 5-HT1 sites were labeled with the agonist radioligands [3H]-8-hydroxy-2-(di-n-propylamino)-tetralin [3H]-8-OH-DPAT, [3H]-5-HT, and [3H]mesulergine. The 5-HT2 receptor was labeled with the antagonist radioligand [3H]ketanserin or the agonist radioligand [3H]-4-bromo-2,5-dimethoxyphenylisopropylamine ([3H]DOB). The apparent 5-HT1 receptor selectivity of agonist compounds was found to be 50- to 100-fold higher when the 5-HT2 receptor affinity was determined using the antagonist radioligand [3H]ketanserin than when the agonist radioligand [3H]DOB was used. Quipazine, a putative specific 5-HT2 agonist, appeared to be only 3-fold more potent at 5-HT2 than at 5-HT1A receptors when [3H]ketanserin was used as the 5-HT2 radioligand. When [3H]DOB was used as the 5-HT2 radioligand, quipazine was determined to be 100-fold more potent at 5-HT2 receptors than at 5-HT1A receptors. 1-(3-trifluoromethylphenyl)piperazine (TFMPP), a putative specific 5-HT1B receptor agonist was apparently 10-fold more potent at 5-HT1B receptors than at 5-HT2 receptors when [3H]ketanserin was used as the 5-HT2 radioligand. When [3H]DOB was used as the 5-HT2 radioligand, TFMPP was found to be equipotent at 5-HT1B and 5-HT2 receptors. Using the 5-HT2 antagonist radioligand [3H]ketanserin, a similar pattern of underestimating 5-HT2 receptor selectivity and/or overestimating 5-HT1A or 5-HT1B receptor selectivity was observed for a series of serotonin receptor agonists. Antagonist receptor selectivity was not affected significantly by the nature of the 5-HT2 receptor assay used. These data indicate that, by using an antagonist radioligand to label 5-HT2 receptors and agonist radioligands to label 5-HT1 receptors, the 5-HT1 receptor selectivity may be overestimated. This may be an especially severe problem in serotonin drug development as drugs that interact potently with 5-HT2 receptors have been reported to be psychoactive and/or hallucinogenic.