Iloperidone hydrochlorideCAS# 1299470-39-5 |
2D Structure
- Celastrol
Catalog No.:BCN5986
CAS No.:34157-83-0
- BMS-345541
Catalog No.:BCC1423
CAS No.:547757-23-3
- Bay 65-1942 free base
Catalog No.:BCC1408
CAS No.:600734-02-9
- Bay 65-1942 HCl salt
Catalog No.:BCC1409
CAS No.:600734-06-3
- Bay 65-1942 R form
Catalog No.:BCC1410
CAS No.:758683-21-5
Quality Control & MSDS
3D structure
Package In Stock
Number of papers citing our products
Cas No. | 1299470-39-5 | SDF | Download SDF |
PubChem ID | 23356600 | Appearance | Powder |
Formula | C24H28ClFN2O4 | M.Wt | 462.94 |
Type of Compound | N/A | Storage | Desiccate at -20°C |
Solubility | Soluble in DMSO | ||
Chemical Name | 1-[4-[3-[4-(6-fluoro-1,2-benzoxazol-3-yl)piperidin-1-yl]propoxy]-3-methoxyphenyl]ethanone;hydrochloride | ||
SMILES | CC(=O)C1=CC(=C(C=C1)OCCCN2CCC(CC2)C3=NOC4=C3C=CC(=C4)F)OC.Cl | ||
Standard InChIKey | FGACDTCLJARDGD-UHFFFAOYSA-N | ||
Standard InChI | InChI=1S/C24H27FN2O4.ClH/c1-16(28)18-4-7-21(23(14-18)29-2)30-13-3-10-27-11-8-17(9-12-27)24-20-6-5-19(25)15-22(20)31-26-24;/h4-7,14-15,17H,3,8-13H2,1-2H3;1H | ||
General tips | For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months. We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months. Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it. |
||
About Packaging | 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial. 2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial. 3. Try to avoid loss or contamination during the experiment. |
||
Shipping Condition | Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request. |
Iloperidone hydrochloride Dilution Calculator
Iloperidone hydrochloride Molarity Calculator
1 mg | 5 mg | 10 mg | 20 mg | 25 mg | |
1 mM | 2.1601 mL | 10.8005 mL | 21.6011 mL | 43.2021 mL | 54.0027 mL |
5 mM | 0.432 mL | 2.1601 mL | 4.3202 mL | 8.6404 mL | 10.8005 mL |
10 mM | 0.216 mL | 1.0801 mL | 2.1601 mL | 4.3202 mL | 5.4003 mL |
50 mM | 0.0432 mL | 0.216 mL | 0.432 mL | 0.864 mL | 1.0801 mL |
100 mM | 0.0216 mL | 0.108 mL | 0.216 mL | 0.432 mL | 0.54 mL |
* Note: If you are in the process of experiment, it's necessary to make the dilution ratios of the samples. The dilution data above is only for reference. Normally, it's can get a better solubility within lower of Concentrations. |
Calcutta University
University of Minnesota
University of Maryland School of Medicine
University of Illinois at Chicago
The Ohio State University
University of Zurich
Harvard University
Colorado State University
Auburn University
Yale University
Worcester Polytechnic Institute
Washington State University
Stanford University
University of Leipzig
Universidade da Beira Interior
The Institute of Cancer Research
Heidelberg University
University of Amsterdam
University of Auckland
TsingHua University
The University of Michigan
Miami University
DRURY University
Jilin University
Fudan University
Wuhan University
Sun Yat-sen University
Universite de Paris
Deemed University
Auckland University
The University of Tokyo
Korea University
Iloperidone (hydrochloride) is a D(2)/5-HT(2) receptor antagonistis, which is an atypical antipsychotic for the treatment of schizophrenia symptoms.
- Dapoxetine HCl
Catalog No.:BCC5064
CAS No.:129938-20-1
- Amicarbazone
Catalog No.:BCC5464
CAS No.:129909-90-6
- MC 976
Catalog No.:BCC1734
CAS No.:129831-99-8
- ODM-201
Catalog No.:BCC3796
CAS No.:1297538-32-9
- Anemoside B4
Catalog No.:BCN1276
CAS No.:129741-57-7
- Anemoside A3
Catalog No.:BCN2328
CAS No.:129724-84-1
- 3-Hydroxylanost-9(11)-24-dien-26-oic acid
Catalog No.:BCN1586
CAS No.:129724-83-0
- 2',4'-Dihydroxy-3',6'-dimethoxychalcone
Catalog No.:BCN6158
CAS No.:129724-43-2
- Aripiprazole
Catalog No.:BCC5034
CAS No.:129722-12-9
- Dofequidar
Catalog No.:BCC4176
CAS No.:129716-58-1
- ZD 7114 hydrochloride
Catalog No.:BCC6852
CAS No.:129689-28-7
- 3,4-Dihydroxybisabola-1,10-diene
Catalog No.:BCN7326
CAS No.:129673-87-6
- Senecionine
Catalog No.:BCN2129
CAS No.:130-01-8
- 1,4-Naphthoquinone
Catalog No.:BCN8420
CAS No.:130-15-4
- Thioridazine HCl
Catalog No.:BCC3869
CAS No.:130-61-0
- Protopine
Catalog No.:BCN6165
CAS No.:130-86-9
- Quinine HCl
Catalog No.:BCN2262
CAS No.:130-89-2
- Quinine
Catalog No.:BCN2341
CAS No.:130-95-0
- I-BET151 (GSK1210151A)
Catalog No.:BCC4476
CAS No.:1300031-49-5
- GSK1324726A
Catalog No.:BCC4038
CAS No.:1300031-52-0
- Dehydrocorydaline nitrate
Catalog No.:BCN2745
CAS No.:13005-09-9
- Mafenide Acetate
Catalog No.:BCC5236
CAS No.:13009-99-9
- Lomustine
Catalog No.:BCC4794
CAS No.:13010-47-4
- (+)-Igmesine hydrochloride
Catalog No.:BCC5902
CAS No.:130152-35-1
Novel Atypical Antipsychotics: Metabolism and Therapeutic Drug Monitoring (TDM).[Pubmed:26033329]
Curr Drug Metab. 2015;16(2):141-51.
Medicinal chemistry is continually developing and testing new drugs and drug candidates to satisfactorily address the needs of patients suffering from schizophrenia. In the last few years, some significant additions have been made to the list of widely available atypical antipsychotics. In particular, iloperidone, asenapine and lurasidone have been approved by the USA's Food and Drug Administration in 2009-10. In this paper, the most notable metabolic characteristics of these new drugs are addressed, with particular attention to their potential for pharmacokinetic interactions, and to the respective advantages and disadvantages in this regard. Moreover, current perspectives on the therapeutic drug monitoring (TDM) of the considered drugs are discussed. Since TDM is most valuable when it allows the personalisation and optimisation of therapeutic practices, it is even more interesting in the case of novel drugs, such as those discussed here, whose real impact in terms of side and toxic effects on very large populations is still unknown. Some analytical notes, related to TDM application, are included for each drug.
Treating the violent patient with psychosis or impulsivity utilizing antipsychotic polypharmacy and high-dose monotherapy.[Pubmed:25119976]
CNS Spectr. 2014 Oct;19(5):439-48.
Insufficient treatment of psychosis often manifests as violent and aggressive behaviors that are dangerous to the patient and others, and that warrant treatment strategies which are not considered first-line, evidence-based practices. Such treatment strategies include both antipsychotic polypharmacy (simultaneous use of 2 antipsychotics) and high-dose antipsychotic monotherapy. Here we discuss the hypothesized neurobiological substrates of various types of violence and aggression, as well as providing arguments for the use of antipsychotic polypharmacy and high-dose monotherapy to target dysfunctional neurocircuitry in the subpopulation of patients that is treatment-resistant, violent, and aggressive. In this review, we focus primarily on the data supporting the use of second-generation, atypical antipsychotics both at high doses and in combination with other antipsychotics.
Simultaneous determination of iloperidone and its two active metabolites in human plasma by liquid chromatography-tandem mass spectrometry: application to a pharmacokinetic study.[Pubmed:23618742]
J Chromatogr B Analyt Technol Biomed Life Sci. 2013 Jun 1;928:52-7.
A selective, sensitive and accurate high-performance liquid chromatographic- tandem mass spectrometry (HPLC-MS/MS) method for simultaneous determination of iloperidone and its two active metabolites, P88 and P95, in human plasma has been first developed and validated. The analytes and internal standard (IS), pioglitazone hydrochloride, were extracted from human plasma via liquid-liquid extraction with ethyl acetate and separated on a CAPCELL PAK C18 MG IIIcolumn (150mmx2.0mm, 5mum) set at 40 degrees C. The mobile phase was acetonitrile: 5mM ammonium formate containing 0.3% formic acid (pH 4.8) (25:75, v/v), with a flow rate of 0.35mL/min. The mass spectrometer was operated in multiple reaction monitoring (MRM) mode using the transitions m/z 427.2-->261.2 for iloperidone, m/z 429.1-->261.1 for P88 and P95, and m/z 357.1-->133.7 for the I.S. (pioglitazone hydrochloride). The method was validated to be linear over the concentration range of 10-10,000pg/mL for iloperidone and P88, 50-15,000pg/mL for P95. The mean recoveries were more than 78.88%, and the intra- and inter-day precisions were less than 10.24% and accuracy was -5.78 to 5.40%, which indicated that the quantitative method was reliable and accurate. The validated method has been successfully applied to a human pharmacokinetic study of iloperidone and two active metabolites, P88 and P95, after oral administration of 4mg iloperidone tablets in 12 healthy Chinese volunteers.
Asenapine, blonanserin, iloperidone, lurasidone, and sertindole: distinctive clinical characteristics of 5 novel atypical antipsychotics.[Pubmed:24201235]
Clin Neuropharmacol. 2013 Nov-Dec;36(6):223-38.
Schizophrenia is a serious, chronic, and devastating mental illness with a substantial impact on psychological, physical, social, and economical areas of an individual and society. To treat such critical mental illness, a number of first-generation (typical) and second-generation (atypical) antipsychotics are currently available in the market. Despite such treatment options, most of patients with schizophrenia have a poor treatment outcome and become treatment resistant, causing continual deterioration on positive, negative, and cognitive symptoms, resulting in impairment of socio-occupational functioning. Hence, additional novel antipsychotics with better efficacy, safety, and tolerability profiles are needed to enable clinicians to diversify treatment options to improve treatment of schizophrenia. Recently, the 3 antipsychotics, including iloperidone (2009), asenapine (2009), and lurasidone (2010), have been approved by the US Food and Drug Administration. Two other atypical antipsychotics, including sertindole and blonanserin, are approved and used outside the United States for treatment of schizophrenia. Sertindole, after it has been voluntarily suspended by the manufacturer in 1998 due to its potential risk in causing cardiovascular-related death, was relaunched to the European market in 2005. More recently, blonanserin was approved in Japan (2008) and in Korea (2009) for the management of schizophrenia. Individual antipsychotic may have differential pros and cons compared with other antipsychotic in terms of efficacy, safety, tolerability, restoration of functional capacity, and economic aspect reflecting relapse prevention. The purpose of this review was to provide distinctive clinical characteristics and up-to-date of clinical trial data of the 5 novel atypical antipsychotics for the management of schizophrenia, which may deliver clinicians better understanding in the use of such atypical antipsychotics for the treatment of schizophrenia in clinical practice.