L-CCG-lll

Potent, competitive glutamate uptake inhibitor CAS# 117857-95-1

L-CCG-lll

Catalog No. BCC6608----Order now to get a substantial discount!

Product Name & Size Price Stock
L-CCG-lll: 5mg $483 In Stock
L-CCG-lll: 10mg Please Inquire In Stock
L-CCG-lll: 20mg Please Inquire Please Inquire
L-CCG-lll: 50mg Please Inquire Please Inquire
L-CCG-lll: 100mg Please Inquire Please Inquire
L-CCG-lll: 200mg Please Inquire Please Inquire
L-CCG-lll: 500mg Please Inquire Please Inquire
L-CCG-lll: 1000mg Please Inquire Please Inquire
Related Products

Quality Control of L-CCG-lll

Number of papers citing our products

Chemical structure

L-CCG-lll

3D structure

Chemical Properties of L-CCG-lll

Cas No. 117857-95-1 SDF Download SDF
PubChem ID 5310958 Appearance Powder
Formula C6H9NO4 M.Wt 159.14
Type of Compound N/A Storage Desiccate at -20°C
Synonyms (2<em>S</em>,3<em>S</em>,4<em>R</em>)-CCG
Solubility Soluble to 100 mM in 1eq. NaOH
Chemical Name (1S,2R)-2-[(S)-amino(carboxy)methyl]cyclopropane-1-carboxylic acid
SMILES C1C(C1C(=O)O)C(C(=O)O)N
Standard InChIKey GZOVEPYOCJWRFC-UZBSEBFBSA-N
Standard InChI InChI=1S/C6H9NO4/c7-4(6(10)11)2-1-3(2)5(8)9/h2-4H,1,7H2,(H,8,9)(H,10,11)/t2-,3+,4+/m1/s1
General tips For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months.
We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months.
Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it.
About Packaging 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial.
2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial.
3. Try to avoid loss or contamination during the experiment.
Shipping Condition Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request.

Biological Activity of L-CCG-lll

DescriptionPotent and competitive inhibitor of both glial and neuronal uptake of glutamate, aspartate and cysteate.

L-CCG-lll Dilution Calculator

Concentration (start)
x
Volume (start)
=
Concentration (final)
x
Volume (final)
 
 
 
C1
V1
C2
V2

calculate

L-CCG-lll Molarity Calculator

Mass
=
Concentration
x
Volume
x
MW*
 
 
 
g/mol

calculate

Preparing Stock Solutions of L-CCG-lll

1 mg 5 mg 10 mg 20 mg 25 mg
1 mM 6.2838 mL 31.4189 mL 62.8378 mL 125.6755 mL 157.0944 mL
5 mM 1.2568 mL 6.2838 mL 12.5676 mL 25.1351 mL 31.4189 mL
10 mM 0.6284 mL 3.1419 mL 6.2838 mL 12.5676 mL 15.7094 mL
50 mM 0.1257 mL 0.6284 mL 1.2568 mL 2.5135 mL 3.1419 mL
100 mM 0.0628 mL 0.3142 mL 0.6284 mL 1.2568 mL 1.5709 mL
* Note: If you are in the process of experiment, it's necessary to make the dilution ratios of the samples. The dilution data above is only for reference. Normally, it's can get a better solubility within lower of Concentrations.

Organizitions Citing Our Products recently

 
 
 

Calcutta University

University of Minnesota

University of Maryland School of Medicine

University of Illinois at Chicago

The Ohio State University

University of Zurich

Harvard University

Colorado State University

Auburn University

Yale University

Worcester Polytechnic Institute

Washington State University

Stanford University

University of Leipzig

Universidade da Beira Interior

The Institute of Cancer Research

Heidelberg University

University of Amsterdam

University of Auckland
TsingHua University
TsingHua University
The University of Michigan
The University of Michigan
Miami University
Miami University
DRURY University
DRURY University
Jilin University
Jilin University
Fudan University
Fudan University
Wuhan University
Wuhan University
Sun Yat-sen University
Sun Yat-sen University
Universite de Paris
Universite de Paris
Deemed University
Deemed University
Auckland University
Auckland University
The University of Tokyo
The University of Tokyo
Korea University
Korea University
Featured Products
New Products
 

References on L-CCG-lll

Inhibition by folded isomers of L-2-(carboxycyclopropyl)glycine of glutamate uptake via the human glutamate transporter hGluT-1.[Pubmed:7621914]

Eur J Pharmacol. 1995 Apr 28;289(2):387-90.

The effects of isomers of 2-(carboxycyclopropyl)glycine (CCG) on uptake of L-glutamate were investigated in COS-7 cells that expressed a cloned human glutamate transporter (hGluT-1). The (2S, 3S, 4R)-isomer (L-CCG-III) and the (2S, 3R, 4S)-isomer (L-CCG-IV) markedly inhibited glutamate uptake with a 50% inhibitory concentration of 290 nM and 1.1 microM, respectively. The (2S, 3S, 4S)-isomer (L-CCG-I) and the (2S, 3R, 4R)-isomer (L-CCG-II) did not inhibit glutamate uptake at concentrations of < or = 10 microM. Thus, hGluT-1 showed a markedly higher affinity for L-CCG-III and L-CCG-IV with a folded conformation of the glutamate skeleton, than for L-CCG-I or L-CCG-II with an extended conformation.

(2S,3S,4R)-2-(carboxycyclopropyl)glycine, a potent and competitive inhibitor of both glial and neuronal uptake of glutamate.[Pubmed:7901789]

Neuropharmacology. 1993 Sep;32(9):833-7.

The effects of several diastereoisomers of L-2-(carboxycyclopropyl)glycine (CCG) on L-glutamate uptake were compared among three different preparations, glial plasmalemmal vesicles (GPV), synaptosomes and cultured astrocytes from rat hippocampus. The (2S,3S,4R)-isomer (L-CCG-III) inhibited a Na(+)-dependent high-affinity L-glutamate uptake in GPV and synaptosomes in a dose dependent manner at a micromolar range. The potency was quite similar to that of L-threo-beta-hydroxyaspartate in both subcellular fractions and much higher than L-aspartate-beta-hydroxamate, which were known as potent inhibitors of glutamate uptake. The (2S,3R,4S)-isomer (L-CCG-IV) also inhibited the glutamate uptake in GPV and synaptosomes, but it was about 100 times less active than L-CCG-III. The (2S,3S,4S)- and (2S,3R,4R)-isomers (L-CCG-I and L-CCG-II, respectively) hardly showed any inhibitory action on the glutamate uptake. Dixon plot analysis of the initial uptake rate revealed that the inhibition was in a competitive manner and the value of the inhibition constant (Ki) was about 1 microM in both GPV and synaptosomes. L-CCG-III effectively inhibited the glutamate uptake by cultured hippocampal astrocytes as well. These results suggested that L-CCG-III inhibited the glutamate uptake in both neurones and glial cells of the mammalian central nervous system in a similar manner.

2-(Carboxycyclopropyl)glycines: binding, neurotoxicity and induction of intracellular free Ca2+ increase.[Pubmed:1319341]

Eur J Pharmacol. 1992 Feb 11;211(2):195-202.

The excitatory actions of the eight stereoisomers of 2-(carboxycyclopropyl)glycine (CCG), conformationally rigid glutamate analogues, were analyzed for the glutamate receptor subtypes by means of binding assays with rat brain membranes. All CCG isomers inhibited the binding of [3H]3-(2-carboxypiperazine-4-yl)propyl-1-phosphonic acid ([3H]CPP) to N-methyl-D-aspartate (NMDA) receptors. The (2S,3R,4S) isomer (L-CCG-IV) was the most potent agonist for the NMDA receptor and its binding potency was 17- and 790-fold higher than that of L-glutamate and NMDA, respectively. The (2S,3S,4R) isomer (L-CCG-III) showed a potent inhibitory activity for [3H]D-aspartate uptake. Further, L-CCG-IV caused a marked increase of intracellular free Ca2+ concentration [( Ca2+]i) and potent neurotoxicity in the single rat cerebral cortical neurons in vitro, and both were blocked effectively by the NMDA antagonists. Significant correlations were observed between neurotoxicity and the increase of [Ca2+]i and [3H]CPP binding affinity to the NMDA receptor.

Potent NMDA-like actions and potentiation of glutamate responses by conformational variants of a glutamate analogue in the rat spinal cord.[Pubmed:2692753]

Br J Pharmacol. 1989 Dec;98(4):1213-24.

1. Neuropharmacological actions of all possible-state isomers of alpha-(carboxycyclopropyl)glycine (CCG), conformationally restricted analogues of glutamate, were examined for electrophysiological effects in the isolated spinal cord of the newborn rat. 2. Eight CCG stereoisomers demonstrated a large variety of depolarizing activities. Among them, the (2R, 3S, 4S) isomers of CCG (D-CCG-II) showed the most potent depolarizing activity, followed by the (2S, 3R, 4S) isomer (L-CCG-IV). 3. The depolarization evoked by L-CCG-IV, D-CCG-II and other D-CCG isomers was effectively depressed by N-methyl-D-aspartate (NMDA) antagonists. D-CCG-II was about 5 times more potent than NMDA in causing a depolarization. 4. The (2S, 3S, 4S) isomer of CCG (L-CCG-I) was more potent than L-glutamate in causing a depolarization of spinal motoneurones. The depolarization was slightly depressed by NMDA antagonists, but residual amplitudes of responses to L-CCG-I in the presence of NMDA antagonists We almost insensitive to 6,7-dinitro-quinoxaline-2,3-dione (DNQX) or 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), suggesting that L-CCG-I might be a novel potent agonist. 5. After application of the (2S, 3S, 4R) isomer of CCG (L-CCG-III), responses to L-glutamate, D- and L-aspartate were markedly enhanced. The enhancement lasted for a period of several hours without a further application of L-CCG-III. 6. L-CCG-III also caused a depolarization, but it seemed unlikely that the potentiation of the glutamate response was directly related to the depolarization evoked by L-CCG-III. 7. The potentiation might be due to inhibition of uptake processes, but L-CCG-III was superior to L-(-)-threo-3-hydroxyaspartate, a potent uptake inhibitor of L-glutamate and L-aspartate, in enhancing the response to L-glutamate in terms of amplitude and duration of responses. 8. CCG isomers should provide useful pharmacological tools for analysis of glutamate neurotransmitter systems.

Keywords:

L-CCG-lll,117857-95-1,(2<em>S</em>,3<em>S</em>,4<em>R</em>)-CCG,Natural Products,Glutamate (EAAT) Transporters, buy L-CCG-lll , L-CCG-lll supplier , purchase L-CCG-lll , L-CCG-lll cost , L-CCG-lll manufacturer , order L-CCG-lll , high purity L-CCG-lll

Online Inquiry for:

      Fill out the information below

      • Size:Qty: - +

      * Required Fields

                                      Result: