MNI-caged-NMDACAS# 1227675-52-6 |
- Mc-MMAD
Catalog No.:BCC1735
CAS No.:1401963-15-2
- Nocodazole
Catalog No.:BCC3826
CAS No.:31430-18-9
- Colchicine
Catalog No.:BCN6271
CAS No.:64-86-8
- Mc-MMAE
Catalog No.:BCC5201
CAS No.:863971-24-8
Quality Control & MSDS
Number of papers citing our products
Chemical structure
3D structure
Cas No. | 1227675-52-6 | SDF | Download SDF |
PubChem ID | 57369294 | Appearance | Powder |
Formula | C14H17N3O6 | M.Wt | 323.3 |
Type of Compound | N/A | Storage | Desiccate at -20°C |
Synonyms | 4-Methoxy-7-nitroindolinyl-caged <em>N</em>-methyl-D-aspartic acid | ||
Solubility | Soluble to 5 mM in water with gentle warming and to 100 mM in DMSO | ||
Chemical Name | (2R)-4-(4-methoxy-7-nitro-2,3-dihydroindol-1-yl)-2-(methylamino)-4-oxobutanoic acid | ||
SMILES | CNC(CC(=O)N1CCC2=C(C=CC(=C21)[N+](=O)[O-])OC)C(=O)O | ||
Standard InChIKey | MUCRWOILMOHLGD-SECBINFHSA-N | ||
Standard InChI | InChI=1S/C14H17N3O6/c1-15-9(14(19)20)7-12(18)16-6-5-8-11(23-2)4-3-10(13(8)16)17(21)22/h3-4,9,15H,5-7H2,1-2H3,(H,19,20)/t9-/m1/s1 | ||
General tips | For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months. We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months. Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it. |
||
About Packaging | 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial. 2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial. 3. Try to avoid loss or contamination during the experiment. |
||
Shipping Condition | Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request. |
Description | NMDA caged with the photosensitive 4-methoxy-7-nitroindolinyl group. |
MNI-caged-NMDA Dilution Calculator
MNI-caged-NMDA Molarity Calculator
1 mg | 5 mg | 10 mg | 20 mg | 25 mg | |
1 mM | 3.0931 mL | 15.4655 mL | 30.931 mL | 61.862 mL | 77.3276 mL |
5 mM | 0.6186 mL | 3.0931 mL | 6.1862 mL | 12.3724 mL | 15.4655 mL |
10 mM | 0.3093 mL | 1.5466 mL | 3.0931 mL | 6.1862 mL | 7.7328 mL |
50 mM | 0.0619 mL | 0.3093 mL | 0.6186 mL | 1.2372 mL | 1.5466 mL |
100 mM | 0.0309 mL | 0.1547 mL | 0.3093 mL | 0.6186 mL | 0.7733 mL |
* Note: If you are in the process of experiment, it's necessary to make the dilution ratios of the samples. The dilution data above is only for reference. Normally, it's can get a better solubility within lower of Concentrations. |
Calcutta University
University of Minnesota
University of Maryland School of Medicine
University of Illinois at Chicago
The Ohio State University
University of Zurich
Harvard University
Colorado State University
Auburn University
Yale University
Worcester Polytechnic Institute
Washington State University
Stanford University
University of Leipzig
Universidade da Beira Interior
The Institute of Cancer Research
Heidelberg University
University of Amsterdam
University of Auckland
TsingHua University
The University of Michigan
Miami University
DRURY University
Jilin University
Fudan University
Wuhan University
Sun Yat-sen University
Universite de Paris
Deemed University
Auckland University
The University of Tokyo
Korea University
- SCH 39166 hydrobromide
Catalog No.:BCC7317
CAS No.:1227675-51-5
- A 943931 dihydrochloride
Catalog No.:BCC7772
CAS No.:1227675-50-4
- StemRegenin 1 (SR1)
Catalog No.:BCC3637
CAS No.:1227633-49-9
- [D-Ala2]-Deltorphin II
Catalog No.:BCC5723
CAS No.:122752-16-3
- Deltorphin I
Catalog No.:BCC6233
CAS No.:122752-15-2
- Bi-linderone
Catalog No.:BCN6116
CAS No.:1227375-09-8
- Philanthotoxin 74
Catalog No.:BCC7478
CAS No.:1227301-51-0
- Liangshanin A
Catalog No.:BCN6115
CAS No.:122717-54-8
- AZD3839
Catalog No.:BCC6471
CAS No.:1227163-84-9
- 4-Fluoro-1-(3-(pyrimidin-5-yl)phenyl)-1-(2-(trifluoromethyl)pyridin-4-yl)-1H-isoindol-3-amine
Catalog No.:BCC5113
CAS No.:1227163-56-5
- BAY 87-2243
Catalog No.:BCC4131
CAS No.:1227158-85-1
- SB 277011A dihydrochloride
Catalog No.:BCC7887
CAS No.:1226917-67-4
- CEP-32496 hydrochloride
Catalog No.:BCC1468
CAS No.:1227678-26-3
- ACTH (1-39)
Catalog No.:BCC6028
CAS No.:12279-41-3
- GSK2334470
Catalog No.:BCC4982
CAS No.:1227911-45-6
- Gadodiamide
Catalog No.:BCC4663
CAS No.:122795-43-1
- Marinopyrrole A
Catalog No.:BCC4098
CAS No.:1227962-62-0
- Sabutoclax
Catalog No.:BCC2236
CAS No.:1228108-65-3
- 8-Geranyloxy-5,7-dimethoxycoumarin
Catalog No.:BCN6117
CAS No.:1228175-65-2
- MRS 2957 triethylammonium salt
Catalog No.:BCC6133
CAS No.:1228271-30-4
- H-D-Phe(4-F)-OH .HCl
Catalog No.:BCC3217
CAS No.:122839-52-5
- Cefoselis
Catalog No.:BCC4092
CAS No.:122841-10-5
- Cefoselis Sulfate
Catalog No.:BCC4769
CAS No.:122841-12-7
- Alosetron
Catalog No.:BCC1342
CAS No.:122852-42-0
New caged neurotransmitter analogs selective for glutamate receptor sub-types based on methoxynitroindoline and nitrophenylethoxycarbonyl caging groups.[Pubmed:22609535]
Neuropharmacology. 2012 Sep;63(4):624-34.
Photolysis is widely used in experimental neuroscience to isolate post-synaptic receptor activation from presynaptic processes, to determine receptor mechanisms in situ, for pharmacological dissection of signaling pathways, or for photostimulation/inhibition in neural networks. We have evaluated new caged neuroactive amino acids that use 4-methoxy-7-nitroindolinyl- (MNI) or 1-(2-nitrophenyl)ethoxycarbonyl (NPEC) photoprotecting groups to make caged ligands specific for glutamate receptor sub-types. Each was tested for interference with synaptic transmission and excitability and for receptor-specific actions in slice preparations. No adverse effects were found at glutamate receptors. At high concentration, MNI-caged, but not NPEC-caged ligands, interfered with GABA-ergic transmission. MNI-caged amino acids have sub-microsecond release times suitable for investigating mechanisms at fast synaptic receptors in situ. MNI-NMDA and MNI-kainate were synthesized and tested. MNI-NMDA showed stoichiometric release of chirally pure NMDA. Wide-field photolysis in cerebellar interneurons produced a fast-rising sustained activation of NMDA receptors, and localized laser photolysis gave a fast, transient response. Photolysis of MNI-kainate to release up to 4 muM kainate generated large inward currents at resting membrane potential in Purkinje neurons. Application of GYKI 53655 indicated that 40% of the current was due to AMPA receptor activation by kainate. Signaling via metabotropic glutamate receptors (mGluR) does not require fast release rates. NPEC cages are simpler to prepare but have slower photorelease. Photolysis of NPEC-ACPD or NPEC-DHPG in Purkinje neurons generated slow inward currents blocked by the mGluR type 1 antagonist CPCCOEt similar to the slow sEPSC seen with parallel fiber burst stimulation. NPEC-AMPA was also tested in Purkinje neurons and showed large sustained inward currents selective for AMPA receptors with little activation of kainate receptors. MNI-caged l-glutamate, NMDA and kainate inhibit GABA-A receptors with IC(5)(0) concentrations close to the maximum concentrations useful in receptor signaling experiments.