NS 3623KV11.1 (hERG) channel activator; antiarrhythmic CAS# 343630-41-1 |
2D Structure
- Melphalan
Catalog No.:BCC2403
CAS No.:148-82-3
- GRI 977143
Catalog No.:BCC2401
CAS No.:325850-81-5
- Mdivi 1
Catalog No.:BCC2402
CAS No.:338967-87-6
- DAPK Substrate Peptide
Catalog No.:BCC2400
CAS No.:386769-53-5
- Cesium chloride
Catalog No.:BCC2399
CAS No.:7647-17-8
Quality Control & MSDS
3D structure
Package In Stock
Number of papers citing our products
Cas No. | 343630-41-1 | SDF | Download SDF |
PubChem ID | 9954236 | Appearance | Powder |
Formula | C15H10BrF3N6O | M.Wt | 427.18 |
Type of Compound | N/A | Storage | Desiccate at -20°C |
Solubility | Soluble to 100 mM in DMSO | ||
Chemical Name | 1-[4-bromo-2-(2H-tetrazol-5-yl)phenyl]-3-[3-(trifluoromethyl)phenyl]urea | ||
SMILES | C1=CC(=CC(=C1)NC(=O)NC2=C(C=C(C=C2)Br)C3=NNN=N3)C(F)(F)F | ||
Standard InChIKey | JXPULDIATMTIIN-UHFFFAOYSA-N | ||
Standard InChI | InChI=1S/C15H10BrF3N6O/c16-9-4-5-12(11(7-9)13-22-24-25-23-13)21-14(26)20-10-3-1-2-8(6-10)15(17,18)19/h1-7H,(H2,20,21,26)(H,22,23,24,25) | ||
General tips | For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months. We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months. Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it. |
||
About Packaging | 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial. 2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial. 3. Try to avoid loss or contamination during the experiment. |
||
Shipping Condition | Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request. |
Description | KV11.1 (hERG) and KV4.3 channel activator. Activates the IKr and Ito currents and displays antiarrhythmic activity. May also act as a partial blocker of KV11.1 channels. Displays selectivity over the key cardiac potassium channels, KV7.1 (KCNQ1) and KV1.5. Suitable for both in vitro and in vivo use. |
NS 3623 Dilution Calculator
NS 3623 Molarity Calculator
1 mg | 5 mg | 10 mg | 20 mg | 25 mg | |
1 mM | 2.3409 mL | 11.7047 mL | 23.4093 mL | 46.8187 mL | 58.5233 mL |
5 mM | 0.4682 mL | 2.3409 mL | 4.6819 mL | 9.3637 mL | 11.7047 mL |
10 mM | 0.2341 mL | 1.1705 mL | 2.3409 mL | 4.6819 mL | 5.8523 mL |
50 mM | 0.0468 mL | 0.2341 mL | 0.4682 mL | 0.9364 mL | 1.1705 mL |
100 mM | 0.0234 mL | 0.117 mL | 0.2341 mL | 0.4682 mL | 0.5852 mL |
* Note: If you are in the process of experiment, it's necessary to make the dilution ratios of the samples. The dilution data above is only for reference. Normally, it's can get a better solubility within lower of Concentrations. |
Calcutta University
University of Minnesota
University of Maryland School of Medicine
University of Illinois at Chicago
The Ohio State University
University of Zurich
Harvard University
Colorado State University
Auburn University
Yale University
Worcester Polytechnic Institute
Washington State University
Stanford University
University of Leipzig
Universidade da Beira Interior
The Institute of Cancer Research
Heidelberg University
University of Amsterdam
University of Auckland
TsingHua University
The University of Michigan
Miami University
DRURY University
Jilin University
Fudan University
Wuhan University
Sun Yat-sen University
Universite de Paris
Deemed University
Auckland University
The University of Tokyo
Korea University
- NSC697923
Catalog No.:BCC4000
CAS No.:343351-67-7
- Cirsiliol
Catalog No.:BCN6822
CAS No.:34334-69-5
- Benzyl 2,6-dimethoxybenzoate
Catalog No.:BCN3697
CAS No.:34328-54-6
- OXA (17-33)
Catalog No.:BCC6364
CAS No.:343268-91-7
- TCS PrP Inhibitor 13
Catalog No.:BCC5999
CAS No.:34320-83-7
- Chelerythrine
Catalog No.:BCN5275
CAS No.:34316-15-9
- Boc-Abu-OH.DCHA
Catalog No.:BCC3200
CAS No.:27494-48-0
- 2,16-Kauranediol
Catalog No.:BCN5274
CAS No.:34302-37-9
- Harmine hydrochloride
Catalog No.:BCN2485
CAS No.:343-27-1
- 5,6-Dimethoxy-2-isopropenylbenzofuran
Catalog No.:BCN7195
CAS No.:34293-09-9
- 2,3-Dihydrohinokiflavone
Catalog No.:BCN6680
CAS No.:34292-87-0
- Chikusetsusaponin V methyl ester
Catalog No.:BCN3472
CAS No.:34291-22-0
- Isoapetalic acid
Catalog No.:BCN5276
CAS No.:34366-34-2
- Ginsenoside Ro
Catalog No.:BCN5937
CAS No.:34367-04-9
- CP-673451
Catalog No.:BCC4981
CAS No.:343787-29-1
- Acebutolol HCl
Catalog No.:BCC4322
CAS No.:34381-68-5
- Isovallesiachotamine
Catalog No.:BCN3549
CAS No.:34384-71-9
- N-Demethyl-alpha-obscurine
Catalog No.:BCN7362
CAS No.:34399-44-5
- H-D-Pro-OH
Catalog No.:BCC3023
CAS No.:344-25-2
- Betamipron
Catalog No.:BCC8876
CAS No.:3440-28-6
- Boc-D-Glu-OBzl
Catalog No.:BCC3394
CAS No.:34404-30-3
- H-D-Lys(Z)-OH
Catalog No.:BCC2678
CAS No.:34404-32-5
- Boc-Lys(Z)-OSu
Catalog No.:BCC3418
CAS No.:34404-36-9
- 8-Chloroadenosine
Catalog No.:BCC7935
CAS No.:34408-14-5
Characterization of SLC26A9, facilitation of Cl(-) transport by bicarbonate.[Pubmed:18769029]
Cell Physiol Biochem. 2008;22(1-4):15-30.
SLC26 family members are anionic transporters involved in Cl(-) and HCO(3)(-) absorption or secretion in epithelia. SLC26A9, preferentially expressed in the lung, is a poorly characterized member of this family. In this study, we investigated the transport properties of human SLC26A9 to determine its functional and pharmacological characteristics. SLC26A9 protein expression results in the appearance of an anionic current exhibiting an apparently linear current/voltage relationship and increases in (36)Cl influxes and effluxes. The sequences of conductivity, Cl(-) >I(-) > NO(3)(-) >/= gluconate > SO(4) (2-) and selectivity (P(x)/P(CI)), I(-) > NO(3)(-) > Cl(-) > gluconate > SO(4)(2-) are found. Cl(-) channel inhibitors DIDS and NS 3623 inhibit SLC26A9 associated currents while the specific CFTR inhibitor (CFTR(inh)-172) or glybenclamide has little effect. Elevation of intracellular cAMP (a CFTR activator) is also ineffective whereas increasing intracellular calcium blocks the SLC26A9 associated currents. The HCO(3)(-) conductance mediated by the SLC26A9 protein expression is low and no intracellular pHi changes are detectable under conditions favoring a Cl(-)/HCO(3)(-) exchange. However, the presence of HCO(3)(-)/CO(2) stimulates the Cl(-)-transporting activity of SLC26A9 in Xenopus laevis oocytes or SLC26A9-transduced COS-7 cells. As an important initial step in characterizing SLC26A9 function, we conclude that SLC26A9 is a Cl(-) channel and we suggest that HCO(3)(-) acts as a modulator of the channel. SLC26A9 physiological role in airway epithelia and its potential interaction with CFTR remain to be elucidated.
Pharmacological activation of rapid delayed rectifier potassium current suppresses bradycardia-induced triggered activity in the isolated guinea pig heart.[Pubmed:17325228]
J Pharmacol Exp Ther. 2007 Jun;321(3):996-1002.
Recently, attention has been drawn to compounds that activate the human ether-a-go-go channel potassium channel (hERG), which is responsible for the repolarizing rapid delayed rectifier potassium current (I(Kr)) in the mammalian myocardium. The compound NS3623 [N-(4-bromo-2-(1H-tetrazol-5-yl)-phenyl)-N'-(3'-trifluoromethylphenyl) urea] increases the macroscopic current conducted by the hERG channels by increasing the time constant for channel inactivation, which we have reported earlier. In vitro studies suggest that pharmacological activation is an attractive approach for the treatment of some arrhythmias. We present here data that support that NS3623 affects native I(Kr) and report the effects that activating this potassium current have in the intact guinea pig heart. In Langendorff-perfused hearts, the compound showed a concentration-dependent shortening of action potential duration, which was also detected as concentration-dependent shorter QT intervals. There was no sign of action potential triangulation or reverse use dependence. NS3623 decreased QT variability and distinctly decreased the occurrence of extrasystoles in the acutely bradypaced hearts. Taken together, the present data strongly support the concept of using hERG activators as a treatment for certain kinds of arrhythmias and suggest further investigation of this new approach.
Biophysical characterization of the new human ether-a-go-go-related gene channel opener NS3623 [N-(4-bromo-2-(1H-tetrazol-5-yl)-phenyl)-N'-(3'-trifluoromethylphenyl)urea].[Pubmed:16825484]
Mol Pharmacol. 2006 Oct;70(4):1319-29.
Within the field of new antiarrhythmic compounds, the interesting idea of activating human ether-a-go-go-related gene (HERG1) potassium channels has recently been introduced. Potentially, drugs that increase HERG1 channel activity will augment the repolarizing current of the cardiac myocytes and stabilize the diastolic interval. This may make the myocardium more resistant to events that cause arrhythmias. We here present the compound N-(4-bromo-2-(1H-tetrazol-5-yl)-phenyl)-N'-(3'-trifluoromethylphenyl)urea (NS3623), which has the ability to activate HERG1 channels expressed in Xenopus laevis oocytes with an EC50 value of 79.4 microM. Exposure of HERG1 channels to NS3623 affects the voltage-dependent release from inactivation, resulting in a half-inactivation voltage that is rightward-shifted by 17.7 mV. Moreover, the compound affects the time constant of inactivation, leading to a slower onset of inactivation of the macroscopic HERG1 currents. We also characterized the ability of NS3623 to increase the activity of different mutated HERG1 channels. The mutants S620T and S631A are severely compromised in their ability to inactivate. Application of NS3623 to any of these two mutants did not result in increased HERG1 current. In contrast, application of NS3623 to the mutant F656M increased HERG1 current to a larger extent than what was observed with wild-type HERG1 channels. Because the amino acid F656 is essential for high-affinity inhibition of HERG1 channels, it is concluded that NS3623 has a dual mode of action, being both an activator and an inhibitor of HERG1 channels. Finally, we show that NS3623 has the ability to shorten action potential durations in guinea pig papillary muscle.