des-His1-[Glu9]-Glucagon (1-29) amideGlucagon receptor antagonist CAS# 110084-95-2 |
- Ro 31-8220
Catalog No.:BCC4295
CAS No.:125314-64-9
- Go 6983
Catalog No.:BCC3705
CAS No.:133053-19-7
- Chelerythrine chloride
Catalog No.:BCN8322
CAS No.:3895-92-9
- Sotrastaurin (AEB071)
Catalog No.:BCC3857
CAS No.:425637-18-9
- Staurosporine
Catalog No.:BCC3612
CAS No.:62996-74-1
- K-252c
Catalog No.:BCC3706
CAS No.:85753-43-1
Quality Control & MSDS
Number of papers citing our products
Chemical structure
3D structure
Cas No. | 110084-95-2 | SDF | Download SDF |
PubChem ID | 16133829 | Appearance | Powder |
Formula | C148H221N41O47S | M.Wt | 3358.68 |
Type of Compound | N/A | Storage | Desiccate at -20°C |
Solubility | Soluble to 1 mg/ml in water | ||
Sequence | SQGTFTSEYSKYLDSRRAQDFVQWLMNT (Modifications: Thr-28 = C-terminal amide) | ||
SMILES | CC(C)CC(C(=O)NC(CCSC)C(=O)NC(CC(=O)N)C(=O)NC(C(C)O)C(=O)N)NC(=O)C(CC1=CNC2=CC=CC=C21)NC(=O)C(CCC(=O)N)NC(=O)C(C(C)C)NC(=O)C(CC3=CC=CC=C3)NC(=O)C(CC(=O)O)NC(=O)C(CCC(=O)N)NC(=O)C(C)NC(=O)C(CCCNC(=N)N)NC(=O)C(CCCNC(=N)N)NC(=O)C(CO)NC(=O)C(CC(=O)O)NC(=O)C(CC(C)C)NC(=O)C(CC4=CC=C(C=C4)O)NC(=O)C(CCCCN)NC(=O)C(CO)NC(=O)C(CC5=CC=C(C=C5)O)NC(=O)C(CCC(=O)O)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C(CC6=CC=CC=C6)NC(=O)C(C(C)O)NC(=O)CNC(=O)C(CCC(=O)N)NC(=O)C(CO)N | ||
Standard InChIKey | RVXSASLSNHDASC-OSWDIKPLSA-N | ||
Standard InChI | InChI=1S/C148H221N41O47S/c1-70(2)54-95(131(221)171-94(49-53-237-11)130(220)179-102(61-111(154)202)140(230)188-117(74(8)194)120(155)210)174-135(225)101(60-81-64-162-86-29-19-18-28-84(81)86)178-128(218)92(43-47-110(153)201)172-144(234)116(72(5)6)187-138(228)99(56-77-24-14-12-15-25-77)177-136(226)103(62-114(206)207)180-127(217)91(42-46-109(152)200)165-121(211)73(7)164-124(214)88(31-22-51-160-147(156)157)167-125(215)89(32-23-52-161-148(158)159)169-142(232)106(68-192)184-137(227)104(63-115(208)209)181-132(222)96(55-71(3)4)173-133(223)97(58-79-33-37-82(197)38-34-79)175-126(216)87(30-20-21-50-149)168-141(231)105(67-191)183-134(224)98(59-80-35-39-83(198)40-36-80)176-129(219)93(44-48-113(204)205)170-143(233)107(69-193)185-146(236)119(76(10)196)189-139(229)100(57-78-26-16-13-17-27-78)182-145(235)118(75(9)195)186-112(203)65-163-123(213)90(41-45-108(151)199)166-122(212)85(150)66-190/h12-19,24-29,33-40,64,70-76,85,87-107,116-119,162,190-198H,20-23,30-32,41-63,65-69,149-150H2,1-11H3,(H2,151,199)(H2,152,200)(H2,153,201)(H2,154,202)(H2,155,210)(H,163,213)(H,164,214)(H,165,211)(H,166,212)(H,167,215)(H,168,231)(H,169,232)(H,170,233)(H,171,221)(H,172,234)(H,173,223)(H,174,225)(H,175,216)(H,176,219)(H,177,226)(H,178,218)(H,179,220)(H,180,217)(H,181,222)(H,182,235)(H,183,224)(H,184,227)(H,185,236)(H,186,203)(H,187,228)(H,188,230)(H,189,229)(H,204,205)(H,206,207)(H,208,209)(H4,156,157,160)(H4,158,159,161)/t73-,74+,75+,76+,85-,87-,88-,89-,90-,91-,92-,93-,94-,95-,96-,97-,98-,99-,100-,101-,102-,103-,104-,105-,106-,107-,116-,117-,118-,119-/m0/s1 | ||
General tips | For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months. We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months. Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it. |
||
About Packaging | 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial. 2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial. 3. Try to avoid loss or contamination during the experiment. |
||
Shipping Condition | Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request. |
Description | Glucagon receptor antagonist (pA2 = 7.2 for inhibition of glucagon-induced adenylyl cyclase activation in rat liver membranes); displays no agonist activity. Enhances glucose-stimulated pancreatic insulin release in vitro. Blocks added glucagon-induced hyperglycemia in normal rabbits without affecting glycogenolysis in vivo. Also blocks endogenous glucagon-induced hyperglycemia in streptozocin diabetic rats. |
des-His1-[Glu9]-Glucagon (1-29) amide Dilution Calculator
des-His1-[Glu9]-Glucagon (1-29) amide Molarity Calculator
Calcutta University
University of Minnesota
University of Maryland School of Medicine
University of Illinois at Chicago
The Ohio State University
University of Zurich
Harvard University
Colorado State University
Auburn University
Yale University
Worcester Polytechnic Institute
Washington State University
Stanford University
University of Leipzig
Universidade da Beira Interior
The Institute of Cancer Research
Heidelberg University
University of Amsterdam
University of Auckland
TsingHua University
The University of Michigan
Miami University
DRURY University
Jilin University
Fudan University
Wuhan University
Sun Yat-sen University
Universite de Paris
Deemed University
Auckland University
The University of Tokyo
Korea University
- Plerixafor (AMD3100)
Catalog No.:BCC1158
CAS No.:110078-46-1
- 12-Epinapelline
Catalog No.:BCN2800
CAS No.:110064-71-6
- 7-Hydroxy-3-(4-hydroxybenzylidene)chroman-4-one
Catalog No.:BCN1624
CAS No.:110064-50-1
- Strophantin K (mixture)
Catalog No.:BCC8256
CAS No.:11005-63-3
- Calpain Inhibitor I, ALLN
Catalog No.:BCC1233
CAS No.:110044-82-1
- Tussilagonone
Catalog No.:BCC8365
CAS No.:110042-38-1
- Taurohyodeoxycholic Acid Sodium Salt
Catalog No.:BCC8363
CAS No.:110026-03-4
- 8-O-Ethylyunaconitine
Catalog No.:BCN6260
CAS No.:110011-77-3
- Sorbic acid
Catalog No.:BCN2218
CAS No.:110-44-1
- Fumaric acid
Catalog No.:BCN5989
CAS No.:110-17-8
- Maleic acid
Catalog No.:BCN8426
CAS No.:110-16-7
- Succinic acid
Catalog No.:BCN5890
CAS No.:110-15-6
- Ascomycin
Catalog No.:BCN8286
CAS No.:11011-38-4
- Indoximod (NLG-8189)
Catalog No.:BCC5584
CAS No.:110117-83-4
- Methyl hesperidin
Catalog No.:BCN6341
CAS No.:11013-97-1
- 4-Galloylquinic acid
Catalog No.:BCN3733
CAS No.:110170-37-1
- Ouabain Octahydrate
Catalog No.:BCC5211
CAS No.:11018-89-6
- JZL184
Catalog No.:BCC4790
CAS No.:1101854-58-3
- 1,5,8-Trihydroxy-3-methoxy-2-prenylxanthone
Catalog No.:BCN1623
CAS No.:110187-11-6
- Malonylginsenoside Rb(1)
Catalog No.:BCC9230
CAS No.:88140-34-5
- Cochliophilin A
Catalog No.:BCC8154
CAS No.:110204-45-0
- Ginsenoside Rb2
Catalog No.:BCN1064
CAS No.:11021-13-9
- Ginsenoside Rc
Catalog No.:BCN1072
CAS No.:11021-14-0
- Temocapril HCl
Catalog No.:BCC5016
CAS No.:110221-44-8
Glucagon receptors on human islet cells contribute to glucose competence of insulin release.[Pubmed:10990079]
Diabetologia. 2000 Aug;43(8):1012-9.
AIMS/HYPOTHESIS: Synergism between glucose and cAMP in the stimulation of insulin secretion has been suggested to regulate beta cells. This study assessed the importance of an interaction between glucose and cAMP in the stimulation of insulin secretion from human islet cells by investigating expression and functional activity of receptors recognising glucagon, glucagon-like peptide-1 (7-36)amide (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP). METHODS: Expression of the glucagon, GLP-1 and GIP receptors in human islets was investigated by northern blots and reverse transcription-polymerase chain reaction analysis. Functional activity of these receptors was assessed by the effects of peptides (agonists and antagonists) on glucose-induced insulin release. RESULTS: Human islet cells express transcripts encoding glucagon, GLP-1 and GIP receptors. Glucose (10 mmol/l) stimulated insulin release 4.5 +/- 0.6-fold over basal (2.5 mmol/l). This glucose effect was amplified by 10 nmol/l GLP-1, GIP or glucagon. It was reduced by 51 +/- 6% in the presence of 1 micromol/l of the glucagon-receptor antagonist des-His1-[Glu9]-glucagon-amide (n = 8; p < 0.05), indicating participation of endogenously released glucagon in the process of glucose-induced insulin release. The glucagon-receptor antagonist also suppressed the potentiation of glucose-induced insulin release by addition of 10 nmol/l glucagon. CONCLUSION/INTERPRETATION: These data suggest that human beta cells express functional glucagon receptors which can, similar to incretin hormone receptors, generate synergistic signals for glucose-induced insulin secretion.
Biological activities of des-His1[Glu9]glucagon amide, a glucagon antagonist.[Pubmed:2560175]
Peptides. 1989 Nov-Dec;10(6):1171-7.
Hyperglycemia in diabetes mellitus is generally associated with elevated levels of glucagon in the blood. A glucagon analog, des-His1[Glu9]glucagon amide, has been designed and synthesized and found to be an antagonist of glucagon in several systems. It has been a useful tool for investigating the mechanisms of glucagon action and for providing evidence that glucagon is a contributing factor in the pathogenesis of diabetes. The in vitro and in vivo activities of the antagonist are reported here. The analog bound 40% as well as glucagon to liver membranes, but did not stimulate the release of cyclic AMP even at 10(6) higher concentration. However, it did activate a second pathway, with the release of inositol phosphates. In addition, the analog enhanced the glucose-stimulated release of insulin from pancreatic islet cells. Of particular importance were the findings that the antagonist also showed only very low activity (less than 0.2%) in the in vivo glycogenolysis assay, and that at a ratio of 100:1 the analog almost completely blocked the hyperglycemic effects of added glucagon in normal rabbits. In addition, it reduced the hyperglycemia produced by endogenous glucagon in streptozotocin diabetic rats. Thus, we have an analog that possesses properties that are necessary for a glucagon antagonist to be potentially useful in the study and treatment of diabetes.