Caproic acidCAS# 142-62-1 |
Quality Control & MSDS
Number of papers citing our products
Chemical structure
3D structure
Cas No. | 142-62-1 | SDF | Download SDF |
PubChem ID | 8892 | Appearance | Powder |
Formula | C6H12O2 | M.Wt | 116.2 |
Type of Compound | N/A | Storage | Desiccate at -20°C |
Solubility | Soluble in Chloroform,Dichloromethane,Ethyl Acetate,DMSO,Acetone,etc. | ||
Chemical Name | hexanoic acid | ||
SMILES | CCCCCC(=O)O | ||
Standard InChIKey | FUZZWVXGSFPDMH-UHFFFAOYSA-N | ||
Standard InChI | InChI=1S/C6H12O2/c1-2-3-4-5-6(7)8/h2-5H2,1H3,(H,7,8) | ||
General tips | For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months. We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months. Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it. |
||
About Packaging | 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial. 2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial. 3. Try to avoid loss or contamination during the experiment. |
||
Shipping Condition | Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request. |
Caproic acid Dilution Calculator
Caproic acid Molarity Calculator
1 mg | 5 mg | 10 mg | 20 mg | 25 mg | |
1 mM | 8.6059 mL | 43.0293 mL | 86.0585 mL | 172.117 mL | 215.1463 mL |
5 mM | 1.7212 mL | 8.6059 mL | 17.2117 mL | 34.4234 mL | 43.0293 mL |
10 mM | 0.8606 mL | 4.3029 mL | 8.6059 mL | 17.2117 mL | 21.5146 mL |
50 mM | 0.1721 mL | 0.8606 mL | 1.7212 mL | 3.4423 mL | 4.3029 mL |
100 mM | 0.0861 mL | 0.4303 mL | 0.8606 mL | 1.7212 mL | 2.1515 mL |
* Note: If you are in the process of experiment, it's necessary to make the dilution ratios of the samples. The dilution data above is only for reference. Normally, it's can get a better solubility within lower of Concentrations. |
Calcutta University
University of Minnesota
University of Maryland School of Medicine
University of Illinois at Chicago
The Ohio State University
University of Zurich
Harvard University
Colorado State University
Auburn University
Yale University
Worcester Polytechnic Institute
Washington State University
Stanford University
University of Leipzig
Universidade da Beira Interior
The Institute of Cancer Research
Heidelberg University
University of Amsterdam
University of Auckland
TsingHua University
The University of Michigan
Miami University
DRURY University
Jilin University
Fudan University
Wuhan University
Sun Yat-sen University
Universite de Paris
Deemed University
Auckland University
The University of Tokyo
Korea University
- NVP-TNKS656
Catalog No.:BCC6541
CAS No.:1419949-20-4
- NSC 625987
Catalog No.:BCC7269
CAS No.:141992-47-4
- Methyl 4-Hydroxyphenylacetate
Catalog No.:BCN1571
CAS No.:14199-15-6
- Emetine Hydrochloride
Catalog No.:BCN2478
CAS No.:14198-59-5
- 16-Hydroxycleroda-3,13-dien-15,16-olide
Catalog No.:BCN7500
CAS No.:141979-19-3
- 14-Deoxy-11,12-didehydroandrographiside
Catalog No.:BCN1572
CAS No.:141973-41-3
- Ginsenoside Rg3
Catalog No.:BCN1068
CAS No.:14197-60-5
- Ginsenoyne K
Catalog No.:BCN3953
CAS No.:141947-42-4
- Pimentol
Catalog No.:BCN2714
CAS No.:141913-95-3
- 4-Hydroxyphenylacetonitrile
Catalog No.:BCN6905
CAS No.:14191-95-8
- H-HoTyr-OH.HBr
Catalog No.:BCC3245
CAS No.:141899-12-9
- Fmoc-Cys(pMeOBzl)-OH
Catalog No.:BCC3477
CAS No.:141892-41-3
- BIM 189
Catalog No.:BCC5934
CAS No.:142062-55-3
- Isosalvianolic acid C
Catalog No.:BCN3476
CAS No.:142115-17-1
- WS 3
Catalog No.:BCC7519
CAS No.:1421227-52-2
- WS6
Catalog No.:BCC5566
CAS No.:1421227-53-3
- (+)-Ketoconazole
Catalog No.:BCC4249
CAS No.:142128-59-4
- CYM 50769
Catalog No.:BCC6337
CAS No.:1421365-63-0
- Mutated EGFR-IN-1
Catalog No.:BCC5444
CAS No.:1421372-66-8
- Mutant EGFR inhibitor
Catalog No.:BCC4119
CAS No.:1421373-62-7
- AZD-9291
Catalog No.:BCC4120
CAS No.:1421373-65-0
- AZD-9291 mesylate
Catalog No.:BCC4121
CAS No.:1421373-66-1
- AZ5104
Catalog No.:BCC6389
CAS No.:1421373-98-9
- LY3039478
Catalog No.:BCC2105
CAS No.:1421438-81-4
Natural antimicrobials for control of Salmonella Enteritidis in feed and in vitro model of the chicken digestive process.[Pubmed:30761617]
J Anim Physiol Anim Nutr (Berl). 2019 Feb 13.
This study evaluated the antimicrobial effect of essential oils (EO) and organic acids (OA) against Salmonella Enteritidis in chicken feed and during an in vitro model that mimics the chicken digestive process. The minimal inhibitory concentration (MIC) of allyl isothiocyanate (AITC), carvacrol (CV), propionic acid (PROP) and Caproic acid (CAP) were individually determined. Then, based on the MICs of each compound, combinations of EOs and/or OAs were tested to evaluate their synergic antimicrobial effect. The synergic effect of AITC and CAP was the most efficient against the bacterial strain tested. Commercial feed was inoculated with a 5-strain cocktail of S. Enteritidis and treated with different doses of AITC + CAP to evaluate their effect on the growth/survival of the pathogen. In addition, the simulated digestion model was used to access the antimicrobial effect of AITC + CAP added to the feed towards S. Enteritidis and Lactobacillus plantarum. Synergistic effect was found between AITC (0.065 mM) and CAP (17.5 mM) against S. Enteritidis in chicken feed, where S. Enteritidis was reduced to undetectable levels (<1.00 log CFU/g). AITC (1.95 mM) + CAP (45 mM) also decreased (p < 0.05) the population of S. Enteritidis in the simulated digestion, while the growth of L. plantarum was not affected. Therefore, the addition of AITC + CAP in feed might be a potential natural antimicrobial able to prevent economic losses caused for Salmonella in chicken.