(+)-KetoconazoleCAS# 142128-59-4 |
- Rocilinostat (ACY-1215)
Catalog No.:BCC2144
CAS No.:1316214-52-4
- LY 294002
Catalog No.:BCC3659
CAS No.:154447-36-6
- (±)-Bay K 8644
Catalog No.:BCC3918
CAS No.:71145-03-4
- Omeprazole
Catalog No.:BCC1254
CAS No.:73590-58-6
Quality Control & MSDS
Number of papers citing our products
Chemical structure
3D structure
Cas No. | 142128-59-4 | SDF | Download SDF |
PubChem ID | 456201 | Appearance | Powder |
Formula | C26H28Cl2N4O4 | M.Wt | 531.43 |
Type of Compound | N/A | Storage | Desiccate at -20°C |
Solubility | DMSO : 33.33 mg/mL (62.72 mM; Need ultrasonic) | ||
Chemical Name | 1-[4-[4-[[(2R,4S)-2-(2,4-dichlorophenyl)-2-(imidazol-1-ylmethyl)-1,3-dioxolan-4-yl]methoxy]phenyl]piperazin-1-yl]ethanone | ||
SMILES | CC(=O)N1CCN(CC1)C2=CC=C(C=C2)OCC3COC(O3)(CN4C=CN=C4)C5=C(C=C(C=C5)Cl)Cl | ||
Standard InChIKey | XMAYWYJOQHXEEK-OZXSUGGESA-N | ||
Standard InChI | InChI=1S/C26H28Cl2N4O4/c1-19(33)31-10-12-32(13-11-31)21-3-5-22(6-4-21)34-15-23-16-35-26(36-23,17-30-9-8-29-18-30)24-7-2-20(27)14-25(24)28/h2-9,14,18,23H,10-13,15-17H2,1H3/t23-,26-/m0/s1 | ||
General tips | For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months. We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months. Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it. |
||
About Packaging | 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial. 2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial. 3. Try to avoid loss or contamination during the experiment. |
||
Shipping Condition | Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request. |
(+)-Ketoconazole Dilution Calculator
(+)-Ketoconazole Molarity Calculator
1 mg | 5 mg | 10 mg | 20 mg | 25 mg | |
1 mM | 1.8817 mL | 9.4086 mL | 18.8172 mL | 37.6343 mL | 47.0429 mL |
5 mM | 0.3763 mL | 1.8817 mL | 3.7634 mL | 7.5269 mL | 9.4086 mL |
10 mM | 0.1882 mL | 0.9409 mL | 1.8817 mL | 3.7634 mL | 4.7043 mL |
50 mM | 0.0376 mL | 0.1882 mL | 0.3763 mL | 0.7527 mL | 0.9409 mL |
100 mM | 0.0188 mL | 0.0941 mL | 0.1882 mL | 0.3763 mL | 0.4704 mL |
* Note: If you are in the process of experiment, it's necessary to make the dilution ratios of the samples. The dilution data above is only for reference. Normally, it's can get a better solubility within lower of Concentrations. |
Calcutta University
University of Minnesota
University of Maryland School of Medicine
University of Illinois at Chicago
The Ohio State University
University of Zurich
Harvard University
Colorado State University
Auburn University
Yale University
Worcester Polytechnic Institute
Washington State University
Stanford University
University of Leipzig
Universidade da Beira Interior
The Institute of Cancer Research
Heidelberg University
University of Amsterdam
University of Auckland
TsingHua University
The University of Michigan
Miami University
DRURY University
Jilin University
Fudan University
Wuhan University
Sun Yat-sen University
Universite de Paris
Deemed University
Auckland University
The University of Tokyo
Korea University
(+)-Ketoconazole is an imidazole anti-fungal agent, a CYP3A4 inhibitor.
- WS6
Catalog No.:BCC5566
CAS No.:1421227-53-3
- WS 3
Catalog No.:BCC7519
CAS No.:1421227-52-2
- Isosalvianolic acid C
Catalog No.:BCN3476
CAS No.:142115-17-1
- BIM 189
Catalog No.:BCC5934
CAS No.:142062-55-3
- Caproic acid
Catalog No.:BCC9218
CAS No.:142-62-1
- NVP-TNKS656
Catalog No.:BCC6541
CAS No.:1419949-20-4
- NSC 625987
Catalog No.:BCC7269
CAS No.:141992-47-4
- Methyl 4-Hydroxyphenylacetate
Catalog No.:BCN1571
CAS No.:14199-15-6
- Emetine Hydrochloride
Catalog No.:BCN2478
CAS No.:14198-59-5
- 16-Hydroxycleroda-3,13-dien-15,16-olide
Catalog No.:BCN7500
CAS No.:141979-19-3
- 14-Deoxy-11,12-didehydroandrographiside
Catalog No.:BCN1572
CAS No.:141973-41-3
- Ginsenoside Rg3
Catalog No.:BCN1068
CAS No.:14197-60-5
- CYM 50769
Catalog No.:BCC6337
CAS No.:1421365-63-0
- Mutated EGFR-IN-1
Catalog No.:BCC5444
CAS No.:1421372-66-8
- Mutant EGFR inhibitor
Catalog No.:BCC4119
CAS No.:1421373-62-7
- AZD-9291
Catalog No.:BCC4120
CAS No.:1421373-65-0
- AZD-9291 mesylate
Catalog No.:BCC4121
CAS No.:1421373-66-1
- AZ5104
Catalog No.:BCC6389
CAS No.:1421373-98-9
- LY3039478
Catalog No.:BCC2105
CAS No.:1421438-81-4
- Sweroside
Catalog No.:BCN6219
CAS No.:14215-86-2
- Hederacoside C
Catalog No.:BCN2329
CAS No.:14216-03-6
- GZD824
Catalog No.:BCC4389
CAS No.:1421783-64-3
- KPT-276
Catalog No.:BCC4445
CAS No.:1421919-75-6
- Taxumairol B
Catalog No.:BCN6940
CAS No.:142203-64-3
A successful case of pregnancy in a woman with ACTH-independent Cushing's syndrome treated with ketoconazole and metyrapone.[Pubmed:28277127]
Gynecol Endocrinol. 2017 May;33(5):349-352.
Cushing's syndrome (CS) is a rare disease caused by a chronic excess of cortisol. Hypercortisolaemia may affect reproductive system leading to infertility in women. However, some of the patients remain fertile, although pregnancy is uncommon. In our report, we describe the case of a 31-years old woman suffering from hypertension, oligomenorrhea, easy bruising, muscle weakness and elevated levels of cortisol. During hospitalization, high level of serum cortisol with stiff diurnal rhythm and undetectable plasma ACTH concentration were found. The overnight 1 mg dexamethasone (DEX) suppression test and the test with 8 mg of DEX were performed - plasma cortisol levels after both doses of DEX were over expected values. Thus, the diagnosis of ACTH independent hypercortisolaemia was established. After three weeks of ketoconazole treatment, high level of beta-HCG was found corresponding to the third week of pregnancy. The ketoconazole was shift to metyrapone but afterwards ketoconazole was added again. The treatment was well tolerated and pregnancy proceeded without complications. US scan revealed a 2 cm adenoma of the left adrenal gland, confirmed by CT. An adrenalectomy was performed. Concluding, we think that medical treatment of CS in pregnant women is well tolerated and safe both for the mother and fetus.
A potential in situ gel formulation loaded with novel fabricated poly(lactide-co-glycolide) nanoparticles for enhancing and sustaining the ophthalmic delivery of ketoconazole.[Pubmed:28331311]
Int J Nanomedicine. 2017 Mar 8;12:1863-1875.
Oral ketoconazole therapy is commonly associated with serious hepatotoxicity. Improving ocular drug delivery could be sufficient to treat eye fungal infections. The purpose of this study was to develop optimized ketoconazole poly(lactide-co-glycolide) nanoparticles (NPs) with subsequent loading into in situ gel (ISG) formulation for ophthalmic drug delivery. Three formulation factors were optimized for their effect on particle size (Y1) and entrapment efficiency (Y2) utilizing central composite experimental design. Interaction among components was studied using differential scanning calorimetry (DSC) and Fourier transform infrared (FTIR) spectroscopy. Ketoconazole crystalline state was studied using X-ray powder diffraction. Six different polymeric ISG formulations were prepared and loaded with either optimized NPs or a pure drug. The prepared ISG formulations were characterized for in vitro gelation, drug release and antifungal activity. The permeation through human epithelial cell line was also investigated. The results revealed that all the studied formulation parameters significantly affected Y1 and Y2 of the developed NPs. DSC and FTIR studies illustrated compatibility among NP components, while there was a change from the crystalline state to the amorphous state of the NPs. The in vitro release from the ISG formulations loaded with drug NPs showed sustained and enhanced drug release compared to pure drug formulations. In addition, ISG loaded with NPs showed enhanced anti-fungal activity compared to pure drug formulations. Alginate-chitosan ISG formulation loaded with optimized ketoconazole NPs illustrated higher drug permeation through epithelial cell lines and is considered as an effective ophthalmic drug delivery in the treatment of fungal eye infections.
Revisiting the Metabolism and Bioactivation of Ketoconazole in Human and Mouse Using Liquid Chromatography-Mass Spectrometry-Based Metabolomics.[Pubmed:28335386]
Int J Mol Sci. 2017 Mar 13;18(3). pii: ijms18030621.
Although ketoconazole (KCZ) has been used worldwide for 30 years, its metabolic characteristics are poorly described. Moreover, the hepatotoxicity of KCZ limits its therapeutic use. In this study, we used liquid chromatography-mass spectrometry-based metabolomics to evaluate the metabolic profile of KCZ in mouse and human and identify the mechanisms underlying its hepatotoxicity. A total of 28 metabolites of KCZ, 11 of which were novel, were identified in this study. Newly identified metabolites were classified into three categories according to the metabolic positions of a piperazine ring, imidazole ring, and N-acetyl moiety. The metabolic characteristics of KCZ in human were comparable to those in mouse. Moreover, three cyanide adducts of KCZ were identified in mouse and human liver microsomal incubates as "flags" to trigger additional toxicity study. The oxidation of piperazine into iminium ion is suggested as a biotransformation responsible for bioactivation. In summary, the metabolic characteristics of KCZ, including reactive metabolites, were comprehensively understood using a metabolomics approach.
P450 inhibitor ketoconazole increased the intratumor drug levels and antitumor activity of fenretinide in human neuroblastoma xenograft models.[Pubmed:28340497]
Int J Cancer. 2017 Jul 15;141(2):405-413.
We previously reported that concurrent ketoconazole, an oral anti-fungal agent and P450 enzyme inhibitor, increased plasma levels of the cytotoxic retinoid, fenretinide (4-HPR) in mice. We have now determined the effects of concurrent ketoconazole on 4-HPR cytotoxic dose-response in four neuroblastoma (NB) cell lines in vitro and on 4-HPR activity against two cell line-derived, subcutaneous NB xenografts (CDX) and three patient-derived NB xenografts (PDX). Cytotoxicity in vitro was assessed by DIMSCAN assay. Xenografted animals were treated with 4-HPR/LXS (240 mg/kg/day) + ketoconazole (38 mg/kg/day) in divided oral doses in cycles of five continuous days a week. In one model, intratumoral levels of 4-HPR and metabolites were assessed by HPLC assay, and in two models intratumoral apoptosis was assessed by TUNEL assay, on Day 5 of the first cycle. Antitumor activity was assessed by Kaplan-Meier event-free survival (EFS). The in vitro cytotoxicity of 4-HPR was not affected by ketoconazole (p >/= 0.06). Ketoconazole increased intratumoral levels of 4-HPR (p = 0.02), of the active 4-oxo-4-HPR metabolite (p = 0.04), and intratumoral apoptosis (p = 0.0006), compared to 4-HPR/LXS-alone. Concurrent ketoconazole increased EFS in both CDX models compared to 4-HPR/LXS-alone (p = 0.008). 4-HPR + ketoconazole also increased EFS in PDX models compared to controls (p = 0.03). Thus, concurrent ketoconazole decreased 4-HPR metabolism with resultant increases of plasma and intratumoral drug levels and antitumor effects in neuroblastoma murine xenografts. These results support the clinical testing of concurrent ketoconazole and oral fenretinide in neuroblastoma.