Cinanserin hydrochlorideSelective 5-HT2 antagonist CAS# 54-84-2 |
2D Structure
- CFM 1571 hydrochloride
Catalog No.:BCC5924
CAS No.:1215548-30-3
- A 350619 hydrochloride
Catalog No.:BCC5939
CAS No.:1217201-17-6
- BAY 41-2272
Catalog No.:BCC7932
CAS No.:256376-24-6
- Riociguat
Catalog No.:BCC1899
CAS No.:625115-55-1
Quality Control & MSDS
3D structure
Package In Stock
Number of papers citing our products
Cas No. | 54-84-2 | SDF | Download SDF |
PubChem ID | 6433141 | Appearance | Powder |
Formula | C20H25ClN2OS | M.Wt | 376.94 |
Type of Compound | N/A | Storage | Desiccate at -20°C |
Solubility | DMSO : 125 mg/mL (331.62 mM; Need ultrasonic) | ||
Chemical Name | (E)-N-[2-[3-(dimethylamino)propylsulfanyl]phenyl]-3-phenylprop-2-enamide;hydrochloride | ||
SMILES | CN(C)CCCSC1=CC=CC=C1NC(=O)C=CC2=CC=CC=C2.Cl | ||
Standard InChIKey | LXGJPDKYMJJWRB-IERUDJENSA-N | ||
Standard InChI | InChI=1S/C20H24N2OS.ClH/c1-22(2)15-8-16-24-19-12-7-6-11-18(19)21-20(23)14-13-17-9-4-3-5-10-17;/h3-7,9-14H,8,15-16H2,1-2H3,(H,21,23);1H/b14-13+; | ||
General tips | For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months. We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months. Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it. |
||
About Packaging | 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial. 2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial. 3. Try to avoid loss or contamination during the experiment. |
||
Shipping Condition | Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request. |
Description | 5-HT2 antagonist. |
Cinanserin hydrochloride Dilution Calculator
Cinanserin hydrochloride Molarity Calculator
1 mg | 5 mg | 10 mg | 20 mg | 25 mg | |
1 mM | 2.6529 mL | 13.2647 mL | 26.5294 mL | 53.0588 mL | 66.3236 mL |
5 mM | 0.5306 mL | 2.6529 mL | 5.3059 mL | 10.6118 mL | 13.2647 mL |
10 mM | 0.2653 mL | 1.3265 mL | 2.6529 mL | 5.3059 mL | 6.6324 mL |
50 mM | 0.0531 mL | 0.2653 mL | 0.5306 mL | 1.0612 mL | 1.3265 mL |
100 mM | 0.0265 mL | 0.1326 mL | 0.2653 mL | 0.5306 mL | 0.6632 mL |
* Note: If you are in the process of experiment, it's necessary to make the dilution ratios of the samples. The dilution data above is only for reference. Normally, it's can get a better solubility within lower of Concentrations. |
Calcutta University
University of Minnesota
University of Maryland School of Medicine
University of Illinois at Chicago
The Ohio State University
University of Zurich
Harvard University
Colorado State University
Auburn University
Yale University
Worcester Polytechnic Institute
Washington State University
Stanford University
University of Leipzig
Universidade da Beira Interior
The Institute of Cancer Research
Heidelberg University
University of Amsterdam
University of Auckland
TsingHua University
The University of Michigan
Miami University
DRURY University
Jilin University
Fudan University
Wuhan University
Sun Yat-sen University
Universite de Paris
Deemed University
Auckland University
The University of Tokyo
Korea University
- Pilocarpine HCl
Catalog No.:BCC4702
CAS No.:54-71-7
- Idoxuridine
Catalog No.:BCC4666
CAS No.:54-42-2
- Metyrapone
Catalog No.:BCC7632
CAS No.:54-36-4
- Furosemide
Catalog No.:BCC3782
CAS No.:54-31-9
- Sodium salicylate
Catalog No.:BCC4846
CAS No.:54-21-7
- 5-Hydroxyindole-3-Acetic Acid
Catalog No.:BCC8285
CAS No.:54-16-0
- Tryptophan
Catalog No.:BCN2615
CAS No.:54-12-6
- L-Nicotine
Catalog No.:BCN6269
CAS No.:54-11-5
- Cefaclor
Catalog No.:BCC2527
CAS No.:53994-73-3
- Z-Phg-OH
Catalog No.:BCC2795
CAS No.:53990-33-3
- Luteolin 7,3'-di-O-glucuronide
Catalog No.:BCN5396
CAS No.:53965-08-5
- Ginsenoside F1
Catalog No.:BCN1244
CAS No.:53963-43-2
- Isoniazid
Catalog No.:BCC9003
CAS No.:54-85-3
- Pentylenetetrazole
Catalog No.:BCC7453
CAS No.:54-95-5
- Amifampridine
Catalog No.:BCC5185
CAS No.:54-96-6
- Albendazole Oxide
Catalog No.:BCC4757
CAS No.:54029-12-8
- Etonogestrel
Catalog No.:BCC5230
CAS No.:54048-10-1
- Tofacitinib (CP-690550) Citrate
Catalog No.:BCC2189
CAS No.:540737-29-9
- Palosuran
Catalog No.:BCC4311
CAS No.:540769-28-6
- Isoastilbin
Catalog No.:BCN5719
CAS No.:54081-48-0
- 2-(1-Hydroxy-1-methylethyl)-4-methoxy-7H-furo[3,2-g][1]benzopyran-7-one
Catalog No.:BCN1422
CAS No.:54087-32-0
- L-Carnitine inner salt
Catalog No.:BCN1229
CAS No.:541-15-1
- Decamethonium Bromide
Catalog No.:BCC4568
CAS No.:541-22-0
- Isovaleramide
Catalog No.:BCC4668
CAS No.:541-46-8
Evaluation of antiviral activities of Houttuynia cordata Thunb. extract, quercetin, quercetrin and cinanserin on murine coronavirus and dengue virus infection.[Pubmed:26851778]
Asian Pac J Trop Med. 2016 Jan;9(1):1-7.
OBJECTIVE: To evaluate the in vitro activities of the ethyl acetate (EA) fraction of Houttuynia cordata (H. cordata) Thunb. (Saururaceae) and three of its constituent flavonoids (quercetin, quercitrin and rutin) against murine coronavirus and dengue virus (DENV). METHODS: The antiviral activities of various concentrations of the EA fraction of H. cordata and flavonoids were assessed using virus neutralization tests against mouse hepatitis virus (MHV) and DENV type 2 (DENV-2). Cinanserin hydrochloride was also tested against MHV. The EA fraction of H. cordata was tested for acute oral toxicity in C57BL/6 mice. RESULTS: The EA fraction of H. cordata inhibited viral infectivity up to 6 d. Cinanserin hydrochloride was able to inhibit MHV for only 2 d. The 50% inhibitory concentrations (IC50) of the EA fraction of H. cordata added before the viral adsorption stage were 0.98 mug/mL for MHV and 7.50 mug/mL for DENV-2 with absence of cytotoxicity. The mice fed with the EA fraction up to 2000 mg/kg did not induce any signs of acute toxicity, with normal histological features of major organs. Certain flavonoids exhibited comparatively weaker antiviral activity, notably quercetin which could inhibit both MHV and DENV-2. This was followed by quercitrin which could inhibit DENV-2 but not MHV, whereas rutin did not exert any inhibitory effect on either virus. When quercetin was combined with quercitrin, enhancement of anti-DENV-2 activity and reduced cytotoxicity were observed. However, the synergistic efficacy of the flavonoid combination was still less than that of the EA fraction. CONCLUSIONS: The compounds in H. cordata contribute to the superior antiviral efficacy of the EA fraction which lacked cytotoxicity in vitro and acute toxicity in vivo. H. cordata has much potential for the development of antiviral agents against coronavirus and dengue infections.
Molecular structural basis of ligand selectivity for 5-HT2 versus 5-HT1C cortical receptors.[Pubmed:1407003]
Naunyn Schmiedebergs Arch Pharmacol. 1992 Jul;346(1):4-11.
A molecular structural criterion of ligand selectivity for the 5-HT2 versus 5-HT1C receptor was hypothesized on the basis of radioligand binding data. Despite the large number of compounds which have been tested at both receptors, analysis of published data led to the identification of only five agents which are greater than 10-fold selective for the 5-HT2 versus the 5-HT1C receptor. Comparison of the two-dimensional structures revealed that, although these five compounds represent three distinct structural classes, they share a common structural feature located in the region hypothesized to be involved in receptor binding: a carbonyl or carboxyl oxygen interposed spatially between an aromatic ring and nitrogen atom. This structural feature was used to predict the relative selectivity of compounds that had not previously been analyzed at both the 5-HT2 and 5-HT1C receptors. All six drugs tested which contain the identified reactive carbonyl or carboxyl group were found to be selective for the 5-HT2 versus the 5-HT1C receptor with selectivity ratios ranging from 26 to 380. By contrast, three agents which are structurally similar but do not contain the reactive carbonyl or carboxyl group displayed equally high affinity for both receptor binding sites. Since the physiological roles of the 5-HT2 and 5-HT1C receptor are markedly different, it would be of potential clinical and scientific value to utilize this molecular structural feature to further identify chemical compounds which would selectively interact with only one of the two receptors.