Coptisine sulfateCAS# 1198398-71-8 |
Quality Control & MSDS
Number of papers citing our products
Chemical structure
3D structure
Cas No. | 1198398-71-8 | SDF | Download SDF |
PubChem ID | 131674029 | Appearance | Powder |
Formula | C19H15NO8S | M.Wt | 417.4 |
Type of Compound | Alkaloids | Storage | Desiccate at -20°C |
Solubility | Soluble in Chloroform,Dichloromethane,Ethyl Acetate,DMSO,Acetone,etc. | ||
Chemical Name | hydrogen sulfate;5,7,17,19-tetraoxa-13-azoniahexacyclo[11.11.0.02,10.04,8.015,23.016,20]tetracosa-1(13),2,4(8),9,14,16(20),21,23-octaene | ||
SMILES | C1C[N+]2=C(C=C3C=CC4=C(C3=C2)OCO4)C5=CC6=C(C=C51)OCO6.OS(=O)(=O)[O-] | ||
Standard InChIKey | LHNQVPXIJDUPAX-UHFFFAOYSA-M | ||
Standard InChI | InChI=1S/C19H14NO4.H2O4S/c1-2-16-19(24-10-21-16)14-8-20-4-3-12-6-17-18(23-9-22-17)7-13(12)15(20)5-11(1)14;1-5(2,3)4/h1-2,5-8H,3-4,9-10H2;(H2,1,2,3,4)/q+1;/p-1 | ||
General tips | For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months. We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months. Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it. |
||
About Packaging | 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial. 2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial. 3. Try to avoid loss or contamination during the experiment. |
||
Shipping Condition | Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request. |
Description | Coptisine sulfate can competitively inhibit CYP2D6(*)1 and CYP2D6(*)10, its Ki values for CYP2D6(*)1 and CYP2D6(*)10 are very close, suggesting that genotype-dependent herb-drug inhibition is similar between the two variants. |
Targets | P450 (e.g. CYP17) |
In vitro | Inhibitory effects of phytochemicals on metabolic capabilities of CYP2D6(*)1 and CYP2D6(*)10 using cell-based models in vitro.[Pubmed: 24786236 ]Acta Pharmacol Sin. 2014 May;35(5):685-96. Herbal products have been widely used, and the safety of herb-drug interactions has aroused intensive concerns. This study aimed to investigate the effects of phytochemicals on the catalytic activities of human CYP2D6(*)1 and CYP2D6(*)10 in vitro. |
Coptisine sulfate Dilution Calculator
Coptisine sulfate Molarity Calculator
1 mg | 5 mg | 10 mg | 20 mg | 25 mg | |
1 mM | 2.3958 mL | 11.9789 mL | 23.9578 mL | 47.9157 mL | 59.8946 mL |
5 mM | 0.4792 mL | 2.3958 mL | 4.7916 mL | 9.5831 mL | 11.9789 mL |
10 mM | 0.2396 mL | 1.1979 mL | 2.3958 mL | 4.7916 mL | 5.9895 mL |
50 mM | 0.0479 mL | 0.2396 mL | 0.4792 mL | 0.9583 mL | 1.1979 mL |
100 mM | 0.024 mL | 0.1198 mL | 0.2396 mL | 0.4792 mL | 0.5989 mL |
* Note: If you are in the process of experiment, it's necessary to make the dilution ratios of the samples. The dilution data above is only for reference. Normally, it's can get a better solubility within lower of Concentrations. |
Calcutta University
University of Minnesota
University of Maryland School of Medicine
University of Illinois at Chicago
The Ohio State University
University of Zurich
Harvard University
Colorado State University
Auburn University
Yale University
Worcester Polytechnic Institute
Washington State University
Stanford University
University of Leipzig
Universidade da Beira Interior
The Institute of Cancer Research
Heidelberg University
University of Amsterdam
University of Auckland
TsingHua University
The University of Michigan
Miami University
DRURY University
Jilin University
Fudan University
Wuhan University
Sun Yat-sen University
Universite de Paris
Deemed University
Auckland University
The University of Tokyo
Korea University
- Cerdulatinib (PRT062070)
Catalog No.:BCC8068
CAS No.:1198300-79-6
- Sodium Channel inhibitor 1
Catalog No.:BCC1959
CAS No.:1198117-23-5
- Mirin
Catalog No.:BCC5986
CAS No.:1198097-97-0
- AP26113
Catalog No.:BCC1069
CAS No.:1197958-12-5
- 3-Furfuryl 2-pyrrolecarboxylate
Catalog No.:BCN6086
CAS No.:119767-00-9
- 29-Norlanosta-8,24-diene-1alpha,2alpha,3beta-triol
Catalog No.:BCN7984
CAS No.:119765-92-3
- Baohuoside VI
Catalog No.:BCC8129
CAS No.:119760-73-5
- Tautomycetin
Catalog No.:BCC7320
CAS No.:119757-73-2
- Schizanthine M
Catalog No.:BCN1939
CAS No.:119736-78-6
- Schizanthine G
Catalog No.:BCN1938
CAS No.:119736-74-2
- SB 206553 hydrochloride
Catalog No.:BCC7143
CAS No.:1197334-04-5
- SDZ 205-557 hydrochloride
Catalog No.:BCC7246
CAS No.:1197334-02-3
- Phyperunolide E
Catalog No.:BCN7292
CAS No.:1198400-52-0
- Esomeprazole magnesium salt
Catalog No.:BCC5430
CAS No.:1198768-91-0
- Posaconazole hydrate
Catalog No.:BCC4234
CAS No.:1198769-38-8
- CGRP 8-37 (human)
Catalog No.:BCC5724
CAS No.:119911-68-1
- 7-O-Methylmorroniside
Catalog No.:BCN7293
CAS No.:119943-46-3
- Peroxy Orange 1
Catalog No.:BCC6336
CAS No.:1199576-10-7
- 1,2-Didehydrotanshinone IIA
Catalog No.:BCN3143
CAS No.:119963-50-7
- INT-777
Catalog No.:BCC5390
CAS No.:1199796-29-6
- Unedone
Catalog No.:BCN6759
CAS No.:1199815-09-2
- Sulfuretin
Catalog No.:BCN4725
CAS No.:120-05-8
- Scoparone
Catalog No.:BCN6088
CAS No.:120-08-1
- Veratraldehyde
Catalog No.:BCN6089
CAS No.:120-14-9
Inhibitory effects of phytochemicals on metabolic capabilities of CYP2D6(*)1 and CYP2D6(*)10 using cell-based models in vitro.[Pubmed:24786236]
Acta Pharmacol Sin. 2014 May;35(5):685-96.
AIM: Herbal products have been widely used, and the safety of herb-drug interactions has aroused intensive concerns. This study aimed to investigate the effects of phytochemicals on the catalytic activities of human CYP2D6(*)1 and CYP2D6(*)10 in vitro. METHODS: HepG2 cells were stably transfected with CYP2D6(*)1 and CYP2D6(*)10 expression vectors. The metabolic kinetics of the enzymes was studied using HPLC and fluorimetry. RESULTS: HepG2-CYP2D6(*)1 and HepG2-CYP2D6(*)10 cell lines were successfully constructed. Among the 63 phytochemicals screened, 6 compounds, including Coptisine sulfate, bilobalide, schizandrin B, luteolin, schizandrin A and puerarin, at 100 mumol/L inhibited CYP2D6(*)1- and CYP2D6(*)10-mediated O-demethylation of a coumarin compound AMMC by more than 50%. Furthermore, the inhibition by these compounds was dose-dependent. Eadie-Hofstee plots demonstrated that these compounds competitively inhibited CYP2D6(*)1 and CYP2D6(*)10. However, their Ki values for CYP2D6(*)1 and CYP2D6(*)10 were very close, suggesting that genotype-dependent herb-drug inhibition was similar between the two variants. CONCLUSION: Six phytochemicals inhibit CYP2D6(*)1 and CYP2D6(*)10-mediated catalytic activities in a dose-dependent manner in vitro. Thus herbal products containing these phytochemicals may inhibit the in vivo metabolism of co-administered drugs whose primary route of elimination is CYP2D6.