HexylHIBOGroup I mGlu antagonist CAS# 334887-43-3 |
- (S)-HexylHIBO
Catalog No.:BCC7167
CAS No.:334887-48-8
Quality Control & MSDS
Number of papers citing our products
Chemical structure
3D structure
Cas No. | 334887-43-3 | SDF | Download SDF |
PubChem ID | 3984764 | Appearance | Powder |
Formula | C12H20N2O4 | M.Wt | 256.3 |
Type of Compound | N/A | Storage | Desiccate at -20°C |
Synonyms | Hexylhomoibotenic acid | ||
Solubility | Soluble to 20 mM in 1eq. NaOH | ||
Chemical Name | 2-amino-3-(4-hexyl-3-oxo-1,2-oxazol-5-yl)propanoic acid | ||
SMILES | CCCCCCC1=C(ONC1=O)CC(C(=O)O)N | ||
Standard InChIKey | OKJBLHIYOWSQDJ-UHFFFAOYSA-N | ||
Standard InChI | InChI=1S/C12H20N2O4/c1-2-3-4-5-6-8-10(18-14-11(8)15)7-9(13)12(16)17/h9H,2-7,13H2,1H3,(H,14,15)(H,16,17) | ||
General tips | For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months. We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months. Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it. |
||
About Packaging | 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial. 2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial. 3. Try to avoid loss or contamination during the experiment. |
||
Shipping Condition | Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request. |
Description | Group I mGlu receptor antagonist (Ki values are 140 and 110 μM at mGlu1a and mGlu5a receptors respectively). Decreases sEPSCs in rat pyramidal neurons in vitro. |
HexylHIBO Dilution Calculator
HexylHIBO Molarity Calculator
1 mg | 5 mg | 10 mg | 20 mg | 25 mg | |
1 mM | 3.9017 mL | 19.5084 mL | 39.0168 mL | 78.0336 mL | 97.5419 mL |
5 mM | 0.7803 mL | 3.9017 mL | 7.8034 mL | 15.6067 mL | 19.5084 mL |
10 mM | 0.3902 mL | 1.9508 mL | 3.9017 mL | 7.8034 mL | 9.7542 mL |
50 mM | 0.078 mL | 0.3902 mL | 0.7803 mL | 1.5607 mL | 1.9508 mL |
100 mM | 0.039 mL | 0.1951 mL | 0.3902 mL | 0.7803 mL | 0.9754 mL |
* Note: If you are in the process of experiment, it's necessary to make the dilution ratios of the samples. The dilution data above is only for reference. Normally, it's can get a better solubility within lower of Concentrations. |
Calcutta University
University of Minnesota
University of Maryland School of Medicine
University of Illinois at Chicago
The Ohio State University
University of Zurich
Harvard University
Colorado State University
Auburn University
Yale University
Worcester Polytechnic Institute
Washington State University
Stanford University
University of Leipzig
Universidade da Beira Interior
The Institute of Cancer Research
Heidelberg University
University of Amsterdam
University of Auckland
TsingHua University
The University of Michigan
Miami University
DRURY University
Jilin University
Fudan University
Wuhan University
Sun Yat-sen University
Universite de Paris
Deemed University
Auckland University
The University of Tokyo
Korea University
- Gisadenafil besylate
Catalog No.:BCC7871
CAS No.:334827-98-4
- Laburnine
Catalog No.:BCN1992
CAS No.:3348-73-0
- Tracheloside
Catalog No.:BCN2738
CAS No.:33464-71-0
- 3-Aminopiperidine dihydrochloride
Catalog No.:BCC8619
CAS No.:334618-23-4
- AH 6809
Catalog No.:BCC1332
CAS No.:33458-93-4
- Evonine
Catalog No.:BCN3087
CAS No.:33458-82-1
- Alnustone
Catalog No.:BCN2761
CAS No.:33457-62-4
- 3,3'-Bilawsone
Catalog No.:BCN7912
CAS No.:33440-64-1
- 2-Pyridylethylamine dihydrochloride
Catalog No.:BCC7379
CAS No.:3343-39-3
- Quercetin 3,4'-dimethyl ether
Catalog No.:BCN5257
CAS No.:33429-83-3
- Etoposide
Catalog No.:BCC1151
CAS No.:33419-42-0
- 3-Hydroxy-3-acetonyloxindole
Catalog No.:BCN4069
CAS No.:33417-17-3
- (S)-HexylHIBO
Catalog No.:BCC7167
CAS No.:334887-48-8
- MEK inhibitor
Catalog No.:BCC1738
CAS No.:334951-92-7
- Substance P
Catalog No.:BCC6957
CAS No.:33507-63-0
- Fucoxanthin
Catalog No.:BCN2948
CAS No.:3351-86-8
- Luteinizing Hormone Releasing Hormone (LHRH)
Catalog No.:BCC1049
CAS No.:33515-09-2
- 6'-Iodoresiniferatoxin
Catalog No.:BCC7114
CAS No.:335151-55-8
- Bax channel blocker
Catalog No.:BCC2392
CAS No.:335165-68-9
- iMAC2
Catalog No.:BCC2396
CAS No.:335166-36-4
- Raddeanoside 20
Catalog No.:BCN2796
CAS No.:335354-79-5
- Cyclo(Phe-Leu)
Catalog No.:BCN2418
CAS No.:3354-31-2
- (-)-Bilobalide
Catalog No.:BCN1279
CAS No.:33570-04-6
- Polpunonic acid
Catalog No.:BCN7136
CAS No.:33600-93-0
Baseline glutamate levels affect group I and II mGluRs in layer V pyramidal neurons of rat sensorimotor cortex.[Pubmed:12626613]
J Neurophysiol. 2003 Mar;89(3):1308-16.
Possible functional roles for glutamate that is detectable at low concentrations in the extracellular space of intact brain and brain slices have not been explored. To determine whether this endogenous glutamate acts on metabotropic glutamate receptors (mGluRs), we obtained whole cell recordings from layer V pyramidal neurons of rat sensorimotor cortical slices. Blockade of mGluRs with (+)-alpha-amino-4-carboxy-alpha-methyl-benzeacetic acid (MCPG, a general mGluR antagonist) increased the mean amplitude of spontaneous excitatory postsynaptic currents (sEPSCs), an effect attributable to a selective increase in the occurrence of large amplitude sEPSCs. 2S-2-amino-2-(1S,2S-2-carboxycyclopropyl-1-yl)-3-(xanth-9-yl)propanoic acid (LY341495, a group II antagonist) increased, but R(-)-1-amino-2,3-dihydro-1H-indene-1,5-dicarboxylic acid (AIDA) and (RS)-hexyl-HIBO (group I antagonists) decreased sEPSC amplitude, and (R,S)-alpha-cyclopropyl-4-phosphonophenylglycine (CPPG, a group III antagonist) did not change it. The change in sEPSCs elicited by MCPG, AIDA, and LY341495 was absent in tetrodotoxin, suggesting that it was action potential-dependent. The increase in sEPSCs persisted in GABA receptor antagonists, indicating that it was not due to effects on inhibitory interneurons. AIDA and (S)-3,5-dihydroxyphenylglycine (DHPG, a group I agonist) elicited positive and negative shifts in holding current, respectively. LY341495 and (2S,2'R,3'R)-2-(2',3'-dicarboxycyclopropyl)glycine (DCG-IV, a group II agonist) elicited negative and positive shifts in holding current, respectively. The AIDA and LY341495 elicited currents persisted in TTX. Finally, in current clamp, LY341495 depolarized cells by approximately 2 mV and increased the number of action potentials to a given depolarizing current pulse. Thus ambient levels of glutamate tonically activate mGluRs and regulate cortical excitability.
Synthesis and pharmacology of 3-isoxazolol amino acids as selective antagonists at group I metabotropic glutamic acid receptors.[Pubmed:11297452]
J Med Chem. 2001 Mar 29;44(7):1051-9.
Using ibotenic acid (2) as a lead, two series of 3-isoxazolol amino acid ligands for (S)-glutamic acid (Glu, 1) receptors have been developed. Whereas analogues of (RS)-2-amino-3-(3-hydroxy-5-methyl-4-isoxazolyl)propionic acid [AMPA, (RS)-3] interact selectively with ionotropic Glu receptors (iGluRs), the few analogues of (RS)-2-amino-3-(3-hydroxy-5-isoxazolyl)propionic acid [HIBO, (RS)-4] so far known typically interact with iGluRs as well as metabotropic Glu receptors (mGluRs). We here report the synthesis and pharmacology of a series of 4-substituted analogues of HIBO. The hexyl analogue 9 was shown to be an antagonist at group I mGluRs. The effects of 9 were shown to reside exclusively in (S)-9 (K(b) = 30 microM at mGlu(1) and K(b) = 61 microM at mGlu(5)). The lower homologue of 9, compound 8, showed comparable effects at mGluRs, but 8 also was a weak agonist at the AMPA subtype of iGluRs. Like 9, the higher homologue, compound 10, did not interact with iGluRs, but 10 selectively antagonized mGlu(1) (K(b) = 160 microM) showing very weak antagonist effect at mGlu(5) (K(b) = 990 microM). The phenyl analogue 11 turned out to be an AMPA agonist and an antagonist at mGlu(1) and mGlu(5), and these effects were shown to originate in (S)-11 (EC(50) = 395 microM, K(b) = 86 and 90 microM, respectively). Compound 9, administered icv, but not sc, was shown to protect mice against convulsions induced by N-methyl-D-aspartic acid (NMDA). Compounds 9 and 11 were resolved using chiral HPLC, and the configurational assignments of the enantiomers were based on X-ray crystallographic analyses.