PSB 06126

NTPDase 3 inhibitor CAS# 1052089-16-3

PSB 06126

2D Structure

Catalog No. BCC7417----Order now to get a substantial discount!

Product Name & Size Price Stock
PSB 06126: 5mg $92 In Stock
PSB 06126: 10mg Please Inquire In Stock
PSB 06126: 20mg Please Inquire Please Inquire
PSB 06126: 50mg Please Inquire Please Inquire
PSB 06126: 100mg Please Inquire Please Inquire
PSB 06126: 200mg Please Inquire Please Inquire
PSB 06126: 500mg Please Inquire Please Inquire
PSB 06126: 1000mg Please Inquire Please Inquire
Related Products

Quality Control of PSB 06126

3D structure

Package In Stock

PSB 06126

Number of papers citing our products

Chemical Properties of PSB 06126

Cas No. 1052089-16-3 SDF Download SDF
PubChem ID 24868313 Appearance Powder
Formula C24H15N2NaO5S M.Wt 466.44
Type of Compound N/A Storage Desiccate at -20°C
Solubility Soluble to 100 mM in DMSO and to 50 mM in ethanol
Chemical Name sodium;1-amino-4-(naphthalen-1-ylamino)-9,10-dioxoanthracene-2-sulfonate
SMILES C1=CC=C2C(=C1)C=CC=C2NC3=CC(=C(C4=C3C(=O)C5=CC=CC=C5C4=O)N)S(=O)(=O)[O-].[Na+]
Standard InChIKey BLOBABILSRPNHR-UHFFFAOYSA-M
Standard InChI InChI=1S/C24H16N2O5S.Na/c25-22-19(32(29,30)31)12-18(26-17-11-5-7-13-6-1-2-8-14(13)17)20-21(22)24(28)16-10-4-3-9-15(16)23(20)27;/h1-12,26H,25H2,(H,29,30,31);/q;+1/p-1
General tips For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months.
We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months.
Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it.
About Packaging 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial.
2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial.
3. Try to avoid loss or contamination during the experiment.
Shipping Condition Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request.

Biological Activity of PSB 06126

DescriptionNucleoside triphosphate diphosphohydrolase 3 (NTPDase 3) inhibitor. Reported to inhibit rat NTPDase 3 at low micromolar concentrations and display selectivity over NTPDase 1 and NTPDase 2.

PSB 06126 Dilution Calculator

Concentration (start)
x
Volume (start)
=
Concentration (final)
x
Volume (final)
 
 
 
C1
V1
C2
V2

calculate

PSB 06126 Molarity Calculator

Mass
=
Concentration
x
Volume
x
MW*
 
 
 
g/mol

calculate

Preparing Stock Solutions of PSB 06126

1 mg 5 mg 10 mg 20 mg 25 mg
1 mM 2.1439 mL 10.7195 mL 21.439 mL 42.878 mL 53.5975 mL
5 mM 0.4288 mL 2.1439 mL 4.2878 mL 8.5756 mL 10.7195 mL
10 mM 0.2144 mL 1.0719 mL 2.1439 mL 4.2878 mL 5.3597 mL
50 mM 0.0429 mL 0.2144 mL 0.4288 mL 0.8576 mL 1.0719 mL
100 mM 0.0214 mL 0.1072 mL 0.2144 mL 0.4288 mL 0.536 mL
* Note: If you are in the process of experiment, it's necessary to make the dilution ratios of the samples. The dilution data above is only for reference. Normally, it's can get a better solubility within lower of Concentrations.

Organizitions Citing Our Products recently

 
 
 

Calcutta University

University of Minnesota

University of Maryland School of Medicine

University of Illinois at Chicago

The Ohio State University

University of Zurich

Harvard University

Colorado State University

Auburn University

Yale University

Worcester Polytechnic Institute

Washington State University

Stanford University

University of Leipzig

Universidade da Beira Interior

The Institute of Cancer Research

Heidelberg University

University of Amsterdam

University of Auckland
TsingHua University
TsingHua University
The University of Michigan
The University of Michigan
Miami University
Miami University
DRURY University
DRURY University
Jilin University
Jilin University
Fudan University
Fudan University
Wuhan University
Wuhan University
Sun Yat-sen University
Sun Yat-sen University
Universite de Paris
Universite de Paris
Deemed University
Deemed University
Auckland University
Auckland University
The University of Tokyo
The University of Tokyo
Korea University
Korea University
Featured Products
New Products
 

References on PSB 06126

The A2b adenosine receptor antagonist PSB-603 promotes oxidative phosphorylation and ROS production in colorectal cancer cells via adenosine receptor-independent mechanism.[Pubmed:27693637]

Cancer Lett. 2016 Dec 1;383(1):135-143.

PURPOSE: Adenosine is a multifaceted regulator of tumor progression. It modulates immune cell activity as well as acting directly on tumor cells. The A2b adenosine receptor (A2b-AR) is thought to be an important mediator of these effects. In this study we sought to analyze the contribution of the A2b-AR to the behavior of colorectal cancer cells. PRINCIPAL RESULTS: The A2b-AR antagonist PSB-603 changed cellular redox state without affecting cellular viability. Quantification of cellular bioenergetics demonstrated that PSB-603 increased basal oxygen consumption rates, indicative of enhanced mitochondrial oxidative phosphorylation. Unexpectedly, pharmacological and genetic approaches to antagonize AR-related signalling of PSB-603 did not abolish the response, suggesting that it was AR-independent. PSB-603 also induced acute increases in reactive oxygen species, and PSB-603 synergized with chemotherapy treatment to increase colorectal cancer cell death, consistent with the known link between cellular metabolism and chemotherapy response. MAJOR CONCLUSIONS: PSB-603 alters cellular metabolism in colorectal cancer cells and increases their sensitivity to chemotherapy. Although requiring more mechanistic insight into its A2b-AR-independent activity, our results show that PSB-603 may have clinical value as an anti-colorectal cancer therapeutic.

Production, purification, and characterization of metalloprotease from Candida kefyr 41 PSB.[Pubmed:27717786]

Int J Biol Macromol. 2017 Jan;94(Pt A):106-113.

A thermostable metalloprotease, produced from an environmental strain of Candida kefyr 41 PSB, was purified 16 fold with a 60% yield by cold ethanol precipitation and affinity chromatography (bentonite-acrylamide-cysteine microcomposite). The purified enzyme appeared as a single protein band at 43kDa. Its optimum pH and temperature points were found to be 7.0 and 105 degrees C, respectively. Km and Vmax values of the enzyme were determined to be 3.5mg/mL and 4.4mumolmL(-1)min(-1), 1.65mg/mL and 6.1mumolmL(-1)min(-1), using casein and gelatine as the substrates, respectively. The activity was inhibited by using ethylenediamine tetraacetic acid (EDTA), indicating that the enzyme was a metalloprotease. Stability of the enzyme was investigated by using thermodynamic and kinetic parameters. The thermal inactivation profile of the enzyme conformed to the first order kinetics. The half life of the enzyme at 95, 105, 115, 125 and 135 degrees C was 1310, 610, 220, 150, and 86min, respectively.

A novel PSB-EDI system for high ammonia wastewater treatment, biomass production and nitrogen resource recovery: PSB system.[Pubmed:27508366]

Water Sci Technol. 2016;74(3):616-24.

A novel process coupling photosynthetic bacteria (PSB) with electrodeionization (EDI) treatment was proposed to treat high ammonia wastewater and recover bio-resources and nitrogen. The first stage (PSB treatment) was used to degrade organic pollutants and accumulate biomass, while the second stage (EDI) was for nitrogen removal and recovery. The first stage was the focus in this study. The results showed that using PSB to transform organic pollutants in wastewater into biomass was practical. PSB could acclimatize to wastewater with a chemical oxygen demand (COD) of 2,300 mg/L and an ammonia nitrogen (NH4(+)-N) concentration of 288-4,600 mg/L. The suitable pH was 6.0-9.0, the average COD removal reached 80%, and the biomass increased by an average of 9.16 times. The wastewater COD removal was independent of the NH4(+)-N concentration. Moreover, the PSB functioned effectively when the inoculum size was only 10 mg/L. The PSB-treated wastewater was then further handled in an EDI system. More than 90% of the NH4(+)-N was removed from the wastewater and condensed in the concentrate, which could be used to produce nitrogen fertilizer. In the whole system, the average NH4(+)-N removal was 94%, and the average NH4(+)-N condensing ratio was 10.0.

Natural light-micro aerobic condition for PSB wastewater treatment: a flexible, simple, and effective resource recovery wastewater treatment process.[Pubmed:28278105]

Environ Technol. 2018 Jan;39(1):74-82.

Photosynthetic bacteria (PSB) have two sets of metabolic pathways. They can degrade pollutants through light metabolic under light-anaerobic or oxygen metabolic pathways under dark-aerobic conditions. Both metabolisms function under natural light-microaerobic condition, which demands less energy input. This work investigated the characteristics of PSB wastewater treatment process under that condition. Results showed that PSB had very strong adaptability to chemical oxygen demand (COD) concentration; with F/M of 5.2-248.5 mg-COD/mg-biomass, the biomass increased three times and COD removal reached above 91.5%. PSB had both advantages of oxygen metabolism in COD removal and light metabolism in resource recovery under natural light-microaerobic condition. For pollutants' degradation, COD, total organic carbon, nitrogen, and phosphorus removal reached 96.2%, 91.0%, 70.5%, and 92.7%, respectively. For resource recovery, 74.2% of C in wastewater was transformed into biomass. Especially, coexistence of light and oxygen promote N recovery ratio to 70.9%, higher than with the other two conditions. Further, 93.7% of N-removed was synthesized into biomass. Finally, CO2 emission reduced by 62.6% compared with the traditional process. PSB wastewater treatment under this condition is energy-saving, highly effective, and environment friendly, and can achieve pollution control and resource recovery.

Keywords:

PSB 06126,1052089-16-3,Natural Products,ATPase, buy PSB 06126 , PSB 06126 supplier , purchase PSB 06126 , PSB 06126 cost , PSB 06126 manufacturer , order PSB 06126 , high purity PSB 06126

Online Inquiry for:

      Fill out the information below

      • Size:Qty: - +

      * Required Fields

                                      Result: