RS 100329 hydrochlorideCAS# 1215654-26-4 |
2D Structure
- Perindopril Erbumine
Catalog No.:BCC3586
CAS No.:107133-36-8
- Losartan Potassium (DuP 753)
Catalog No.:BCC1080
CAS No.:124750-99-8
- Candesartan
Catalog No.:BCC2558
CAS No.:139481-59-7
- Telmisattan
Catalog No.:BCC3863
CAS No.:144701-48-4
- Imidapril HCl
Catalog No.:BCC3792
CAS No.:89396-94-1
Quality Control & MSDS
3D structure
Package In Stock
Number of papers citing our products
Cas No. | 1215654-26-4 | SDF | Download SDF |
PubChem ID | 11340200 | Appearance | Powder |
Formula | C20H26ClF3N4O3 | M.Wt | 462.89 |
Type of Compound | N/A | Storage | Desiccate at -20°C |
Solubility | Soluble to 100 mM in water | ||
Chemical Name | 5-methyl-3-[3-[4-[2-(2,2,2-trifluoroethoxy)phenyl]piperazin-1-yl]propyl]-1H-pyrimidine-2,4-dione;hydrochloride | ||
SMILES | CC1=CNC(=O)N(C1=O)CCCN2CCN(CC2)C3=CC=CC=C3OCC(F)(F)F.Cl | ||
Standard InChIKey | CWVABCXVOAVUJL-UHFFFAOYSA-N | ||
Standard InChI | InChI=1S/C20H25F3N4O3.ClH/c1-15-13-24-19(29)27(18(15)28)8-4-7-25-9-11-26(12-10-25)16-5-2-3-6-17(16)30-14-20(21,22)23;/h2-3,5-6,13H,4,7-12,14H2,1H3,(H,24,29);1H | ||
General tips | For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months. We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months. Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it. |
||
About Packaging | 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial. 2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial. 3. Try to avoid loss or contamination during the experiment. |
||
Shipping Condition | Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request. |
Description | Subtype-selective α1A-adrenoceptor antagonist (pKi = 9.6 for human cloned α1A receptors). Displays 126- and 50-fold selectivity over human α1B and α1D receptors respectively. Active in vivo. |
RS 100329 hydrochloride Dilution Calculator
RS 100329 hydrochloride Molarity Calculator
1 mg | 5 mg | 10 mg | 20 mg | 25 mg | |
1 mM | 2.1603 mL | 10.8017 mL | 21.6034 mL | 43.2068 mL | 54.0085 mL |
5 mM | 0.4321 mL | 2.1603 mL | 4.3207 mL | 8.6414 mL | 10.8017 mL |
10 mM | 0.216 mL | 1.0802 mL | 2.1603 mL | 4.3207 mL | 5.4009 mL |
50 mM | 0.0432 mL | 0.216 mL | 0.4321 mL | 0.8641 mL | 1.0802 mL |
100 mM | 0.0216 mL | 0.108 mL | 0.216 mL | 0.4321 mL | 0.5401 mL |
* Note: If you are in the process of experiment, it's necessary to make the dilution ratios of the samples. The dilution data above is only for reference. Normally, it's can get a better solubility within lower of Concentrations. |
Calcutta University
University of Minnesota
University of Maryland School of Medicine
University of Illinois at Chicago
The Ohio State University
University of Zurich
Harvard University
Colorado State University
Auburn University
Yale University
Worcester Polytechnic Institute
Washington State University
Stanford University
University of Leipzig
Universidade da Beira Interior
The Institute of Cancer Research
Heidelberg University
University of Amsterdam
University of Auckland
TsingHua University
The University of Michigan
Miami University
DRURY University
Jilin University
Fudan University
Wuhan University
Sun Yat-sen University
Universite de Paris
Deemed University
Auckland University
The University of Tokyo
Korea University
- SB 242084
Catalog No.:BCC5949
CAS No.:1215566-78-1
- CFM 1571 hydrochloride
Catalog No.:BCC5924
CAS No.:1215548-30-3
- RG2833
Catalog No.:BCC1893
CAS No.:1215493-56-3
- GR 144053 trihydrochloride
Catalog No.:BCC6998
CAS No.:1215333-48-4
- SR 58611A hydrochloride
Catalog No.:BCC7833
CAS No.:121524-09-2
- Salvianolic acid B; Lithospermic acid B; Danfensuan B
Catalog No.:BCC8249
CAS No.:121521-90-2
- PF-04991532
Catalog No.:BCC8094
CAS No.:1215197-37-7
- 5-Benzyloxyindole
Catalog No.:BCC8742
CAS No.:1215-59-4
- Daclatasvir (BMS-790052)
Catalog No.:BCC2533
CAS No.:1214735-16-6
- Ajugapantin A
Catalog No.:BCN3663
CAS No.:121449-67-0
- WZ4003
Catalog No.:BCC4363
CAS No.:1214265-58-3
- WZ8040
Catalog No.:BCC1075
CAS No.:1214265-57-2
- CP-809101 hydrochloride
Catalog No.:BCC1499
CAS No.:1215721-40-6
- NBI 27914 hydrochloride
Catalog No.:BCC7124
CAS No.:1215766-76-9
- Gatifloxacin hydrochloride
Catalog No.:BCC4224
CAS No.:121577-32-0
- DMCM hydrochloride
Catalog No.:BCC7560
CAS No.:1215833-62-7
- Valspodar
Catalog No.:BCC2027
CAS No.:121584-18-7
- 6-Demethoxy-9'-deoxycleomiscosin A
Catalog No.:BCN7298
CAS No.:121587-18-6
- 6-Demethoxycleomiscosin A
Catalog No.:BCN7299
CAS No.:121587-20-0
- YM 298198 hydrochloride
Catalog No.:BCC7366
CAS No.:1216398-09-2
- SB 258585 hydrochloride
Catalog No.:BCC7216
CAS No.:1216468-02-8
- Kaempferol-3-O-(2',6'-di-O-trans-p-coumaroyl)-beta-D-glucopyranoside
Catalog No.:BCN1603
CAS No.:121651-61-4
- BX 513 hydrochloride
Catalog No.:BCC5940
CAS No.:1216540-18-9
- ZK 93423 hydrochloride
Catalog No.:BCC7227
CAS No.:1216574-52-5
The role of alpha(1)-adrenoceptors and 5-HT(1A) receptors in the control of the micturition reflex in male anaesthetized rats.[Pubmed:11325795]
Br J Pharmacol. 2001 May;133(1):61-72.
1. The effects of the alpha(1)-adrenoceptor antagonists doxazosin (0.1 -- 2 mg kg(-1)), RS-100329 (alpha(1A); 0.01 -- 1 mg kg(-1)), RS-513815 (Ro 151-3815, alpha(1B); 0.3 -- 3 mg kg(-1)) and BMY 7378 (alpha(1D); 0.1 -- 1 mg kg(-1)), the 5-HT(1A) receptor agonist, 8-OH-DPAT (0.03 -- 0.3 mg kg(-1)) and antagonist WAY-100635 (0.03 -- 0.3 mg kg(-1)) were investigated (i.v.) on the 'micturition reflex' in the urethane anaesthetized male rat. 2. Reflex-evoked urethra contractions were most sensitive to the inhibitory action of RS-100329, followed by doxazosin, BMY 7378 and WAY-100635 and then RS-513815. The maximum inhibition was 66, 63, 54, 46 and 22% at doses of 0.3, 0.5, 0.3, 0.3 and 3 mg kg(-1) respectively. 3. BMY 7378 and 8-OH-DPAT decreased, while WAY-100635 increased, the pressure threshold to induce bladder contraction. WAY-100635 (0.01 mg kg(-1)) blocked the effects of BMY 7378 (1 mg kg(-1)) on bladder pressure and volume threshold. 4. Doxazosin, RS-100329 and BMY 7378 had a similar potency in inducing a fall in arterial blood pressure while WAY-100635 only caused a fall at the highest dose. 5. Therefore, reflex-evoked urethral contraction involves the activation of alpha(1A/1D)-adrenoceptors, as BMY 7378 and RS-100329 are similarly potent in attenuating this effect. The ability of WAY-100635 to attenuate this contraction may suggest that 5-HT(1A) receptors are also involved. However, as this inhibition occurred at the highest dose of WAY-100635, which also caused a fall in arterial blood pressure; this effect is considered to be due to blockade of alpha(1)-adrenoceptors not 5-HT(1A) receptors. Nevertheless the initiation of the 'micturition reflex' involves the activation of 5-HT(1A) receptors.
In vitro alpha1-adrenoceptor pharmacology of Ro 70-0004 and RS-100329, novel alpha1A-adrenoceptor selective antagonists.[Pubmed:10369480]
Br J Pharmacol. 1999 May;127(1):252-8.
It has been hypothesized that in patients with benign prostatic hyperplasia, selective antagonism of the alpha1A-adrenoceptor-mediated contraction of lower urinary tract tissues may, via a selective relief of outlet obstruction, lead to an improvement in symptoms. The present study describes the alpha1-adrenoceptor (alpha1-AR) subtype selectivities of two novel alpha1-AR antagonists, Ro 70-0004 (aka RS-100975) and a structurally-related compound RS-100329, and compares them with those of prazosin and tamsulosin. Radioligand binding and second-messenger studies in intact CHO-K1 cells expressing human cloned alpha1A-, alpha1B- and alpha1D-AR showed nanomolar affinity and significant alpha1A-AR subtype selectivity for both Ro 70-0004 (pKi 8.9: 60 and 50 fold selectivity) and RS-100329 (pKi 9.6: 126 and 50 fold selectivity) over the alpha1B- and alpha1D-AR subtypes respectively. In contrast, prazosin and tamsulosin showed little subtype selectivity. Noradrenaline-induced contractions of human lower urinary tract (LUT) tissues or rabbit bladder neck were competitively antagonized by Ro 70-0004 (pA2 8.8 and 8.9), RS-100329 (pA2 9.2 and 9.2), tamsulosin (pA2 10.4 and 9.8) and prazosin (pA2 8.7 and 8.3 respectively). Affinity estimates for tamsulosin and prazosin in antagonizing alpha1-AR-mediated contractions of human renal artery (HRA) and rat aorta (RA) were similar to those observed in LUT tissues, whereas Ro 70-0004 and RS-100329 were approximately 100 fold less potent (pA2 values of 6.8/6.8 and 7.3/7.9 in HRA/RA respectively). The alpha1A-AR subtype selectivity of Ro 70-0004 and RS-100329, demonstrated in both cloned and native systems, should allow for an evaluation of the clinical utility of a 'uroselective' agent for the treatment of symptoms associated with benign prostatic hyperplasia.
Alpha1L-adrenoceptor mediation of smooth muscle contraction in rabbit bladder neck: a model for lower urinary tract tissues of man.[Pubmed:9579731]
Br J Pharmacol. 1998 Apr;123(7):1359-66.
1. The alpha1-adrenoceptor population mediating contractile responses to noradrenaline (NA) in smooth muscles of the bladder neck from rabbit (RBN) has been characterized by use of quantitative receptor pharmacology. 2. Experiments with several 'key' alpha1-adrenoceptor antagonists of varying subtype selectivities (RS-17053, BMY 7378, indoramin, 5-methylurapidil, prazosin, REC 15/2739, SNAP 5089, terazosin, WB 4101, tamsulosin, (+)-cyclazosin and RS-100329) were conducted. Schild regression analyses yielded affinity (mean pKb) estimates of 7.1, 6.2, 8.6, 8.6, 8.4, 9.3, 7.0, 7.4, 8.9, 10.0, 7.1 and 9.3, respectively, although deviations from unit Schild regression slope question the robustness of data for RS-17053 and SNAP 5089. 3. The nature of antagonism by these agents and the profile of affinity determinations generated together suggest that a single alpha1-adrenoceptor subtype mediates contractile responses of RBN to NA. Additional studies with phenylephrine indicated also an agonist-independence of this profile. Pharmacologically, this profile was reminiscent of that described as 'alpha1L'-adrenoceptor, which has been shown to mediate contractions of several tissues including lower urinary tract (LUT) tissues of man. Furthermore, a similarity was noticed between the 'alpha1L'-adrenoceptor described here in RBN and the rabbit and human cloned alpha1a-adrenoceptor (based on data from both whole cell radioligand binding at 37 degrees C and [3H]-inositol phosphates accumulation assays), characterizations of which have been published elsewhere. 4. In conclusion, the RBN appears to provide a predictive pharmacological assay for the study of NA-induced smooth muscle contraction in LUT tissues of man.