tenuifoliside C

CAS# 139726-37-7

tenuifoliside C

2D Structure

Catalog No. BCN8299----Order now to get a substantial discount!

Product Name & Size Price Stock
tenuifoliside C: 5mg Please Inquire In Stock
tenuifoliside C: 10mg Please Inquire In Stock
tenuifoliside C: 20mg Please Inquire Please Inquire
tenuifoliside C: 50mg Please Inquire Please Inquire
tenuifoliside C: 100mg Please Inquire Please Inquire
tenuifoliside C: 200mg Please Inquire Please Inquire
tenuifoliside C: 500mg Please Inquire Please Inquire
tenuifoliside C: 1000mg Please Inquire Please Inquire

Quality Control of tenuifoliside C

3D structure

Package In Stock

tenuifoliside C

Number of papers citing our products

Chemical Properties of tenuifoliside C

Cas No. 139726-37-7 SDF Download SDF
PubChem ID 11968391 Appearance White crystalline powder
Formula C35H44O19 M.Wt 768.71
Type of Compound Phenylpropanoids Storage Desiccate at -20°C
Solubility Soluble in Chloroform,Dichloromethane,Ethyl Acetate,DMSO,Acetone,etc.
Chemical Name [(2R,3S,4S,5R,6R)-3,4,5-trihydroxy-6-[(2S,3S,4R,5R)-4-hydroxy-2,5-bis(hydroxymethyl)-3-[(E)-3-(3,4,5-trimethoxyphenyl)prop-2-enoyl]oxyoxolan-2-yl]oxyoxan-2-yl]methyl (E)-3-(4-hydroxy-3,5-dimethoxyphenyl)prop-2-enoate
SMILES COC1=CC(=CC(=C1O)OC)C=CC(=O)OCC2C(C(C(C(O2)OC3(C(C(C(O3)CO)O)OC(=O)C=CC4=CC(=C(C(=C4)OC)OC)OC)CO)O)O)O
Standard InChIKey PMGMZCFZCYRJAG-KQTMLTHJSA-N
Standard InChI InChI=1S/C35H44O19/c1-45-19-10-17(11-20(46-2)27(19)40)6-8-25(38)50-15-24-28(41)30(43)31(44)34(51-24)54-35(16-37)33(29(42)23(14-36)53-35)52-26(39)9-7-18-12-21(47-3)32(49-5)22(13-18)48-4/h6-13,23-24,28-31,33-34,36-37,40-44H,14-16H2,1-5H3/b8-6+,9-7+/t23-,24-,28-,29-,30+,31-,33+,34-,35+/m1/s1
General tips For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months.
We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months.
Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it.
About Packaging 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial.
2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial.
3. Try to avoid loss or contamination during the experiment.
Shipping Condition Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request.

Source of tenuifoliside C

The roots of Polygala tenuifolia

Biological Activity of tenuifoliside C

Description1. Tenuifoliside C is a target lactate dehydrogenase inhibitor. 2. Tenuifoliside C significantly inhibits chlorzoxazone 6-hydroxylation catalyzed by CYP2E1.
TargetsP450 (e.g. CYP17)

tenuifoliside C Dilution Calculator

Concentration (start)
x
Volume (start)
=
Concentration (final)
x
Volume (final)
 
 
 
C1
V1
C2
V2

calculate

tenuifoliside C Molarity Calculator

Mass
=
Concentration
x
Volume
x
MW*
 
 
 
g/mol

calculate

Preparing Stock Solutions of tenuifoliside C

1 mg 5 mg 10 mg 20 mg 25 mg
1 mM 1.3009 mL 6.5044 mL 13.0088 mL 26.0176 mL 32.522 mL
5 mM 0.2602 mL 1.3009 mL 2.6018 mL 5.2035 mL 6.5044 mL
10 mM 0.1301 mL 0.6504 mL 1.3009 mL 2.6018 mL 3.2522 mL
50 mM 0.026 mL 0.1301 mL 0.2602 mL 0.5204 mL 0.6504 mL
100 mM 0.013 mL 0.065 mL 0.1301 mL 0.2602 mL 0.3252 mL
* Note: If you are in the process of experiment, it's necessary to make the dilution ratios of the samples. The dilution data above is only for reference. Normally, it's can get a better solubility within lower of Concentrations.

Organizitions Citing Our Products recently

 
 
 

Calcutta University

University of Minnesota

University of Maryland School of Medicine

University of Illinois at Chicago

The Ohio State University

University of Zurich

Harvard University

Colorado State University

Auburn University

Yale University

Worcester Polytechnic Institute

Washington State University

Stanford University

University of Leipzig

Universidade da Beira Interior

The Institute of Cancer Research

Heidelberg University

University of Amsterdam

University of Auckland
TsingHua University
TsingHua University
The University of Michigan
The University of Michigan
Miami University
Miami University
DRURY University
DRURY University
Jilin University
Jilin University
Fudan University
Fudan University
Wuhan University
Wuhan University
Sun Yat-sen University
Sun Yat-sen University
Universite de Paris
Universite de Paris
Deemed University
Deemed University
Auckland University
Auckland University
The University of Tokyo
The University of Tokyo
Korea University
Korea University
Featured Products
New Products
 

References on tenuifoliside C

[Analysis of influencing factors of secondary metabolites contents in cultivated Polygala tenuifolia].[Pubmed:29171237]

Zhongguo Zhong Yao Za Zhi. 2017 Aug;42(16):3167-3177.

This work was launched to explore the effect of habitat and growth year on the secondary metabolites contents of cultivated Polygala tenuifolia. The samples of cultivated P. tenuifolia were analyzed by ultra-high performance liquid chromatography(UPLC)-quadrupole time-of-flight mass spectrometry(Q-TOF MS), and the obtained data were analyzed using multiple statistical analysis and cluster analysis. The results showed that compared with growth year, habitat is a main influencing factor which affected the secondary metabolites contents of P. tenuifolia. The contents of sucrose esters and oligosacchride multi-esters are greatly dependent on the habitat (the sample-AG with high levels of components of tenuifoliside B and tenuifoliside C, and the sample-FY with high levels of 3,6'-disinapoyl sucrose, tenuifoliose S, tenuifoliose L, and tenuifoliose V). There is no obvious effect of habitat and growth year on xanthone. The contents of triterpene saponins are greatly dependent on the growth year, and the content of parts of triterpene saponins increased as time goes on.The result indicated that the effect of habitat and growth year on different types of secondary metabolites is not completely equivalent. This study will contribute to the breeding of P. tenuifolia and amendment of current commodity criteria.

[Effect of oligosaccharide esters and polygalaxanthone Ill from Polygala tenuifolia willd towards cytochrome P450].[Pubmed:25850285]

Zhongguo Zhong Yao Za Zhi. 2014 Nov;39(22):4459-63.

Five compounds (tenuifoliside C, tenuifoliside D, telephiose A, telephiose C and polygalaxanthone III) from polygala tenuifolia wild were incubated together with CYP probe substrate in human liver microsomes to investigate the inhibitory effect towards CYP450 enzyme. Phenacetin (CYP1A2), coumarin (CYP2A6), paclitaxel (CYP2C8), diclofenac (CYP2C9), S-mepheriytoin (CYP2C19), dextromethorphan (CYP2D6), chlorzoxazone (CYP2E1), midazolam (CYP3A) were selected as the isoforfn specific substrate. And the formation of paracetamol, 7-hydroxycoumarin, 6alpha-hydroxy paclitaxel, 4'-hydroxydiclofenac, dextrorphan, 6-hydroxychlorzoxazone, 1'-hydroxymidazolam, 4'-hydroxymephenytoin were detected respectively to measure the effect towards CYP450 by high-pressure liquid chromatography (HPLC). The result shows that five compounds from polygala tenuifolia willd significantly inhibit chlorzoxazone 6-hydroxylation catalyzed by CYP2E1, while showed no effect towards CYP1A2, CYP2A6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP3A. And IC50 value was 38.73, 54.14, 61.77, 62.22, 50.56 micromol x L(-1), respectively.

Bioactivity screening, extraction, and separation of lactate dehydrogenase inhibitors from Polygala tenuifolia Willd. based on a hyphenated strategy.[Pubmed:28134488]

J Sep Sci. 2017 Mar;40(6):1385-1395.

Stroke is the second leading cause of death worldwide. Lactate dehydrogenase inhibitors are currently widely used in the treatment of ischemic stroke, and natural products are considered promising sources of lactate dehydrogenase inhibitors. In this study, ultrafiltration liquid chromatography coupled with mass spectrometry was used for the screening and identification of lactate dehydrogenase inhibitors from Polygala tenuifolia. Furthermore, five lactate dehydrogenase inhibitors, sibiricose A5, 3,6'-di-O-sinapoyl-sucrose, glomeratose A, tenuifoliside B, and tenuifoliside C, were selected as target lactate dehydrogenase inhibitors. In addition, the five target compounds with purities of 96.45, 97.65, 96.38, 94.34, and 93.29% were extracted and isolated using a new hyphenated strategy of microwave-assisted extraction coupled with countercurrent chromatography with a two-phase solvent system of n-hexane/n-butanol/ethanol/water (5.321:1.00:1.664:6.647). The bioactivities of the isolated compounds were analyzed using PC12 cells and the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The results also demonstrated that microwave-assisted extraction coupled with countercurrent chromatography is an efficient method of isolating chemical constituents from medicinal herbs. Moreover, the research route consisting of activity screening, extraction, separation, and activity verification of the compounds has the advantages of being efficient, orientated, and objective.

UPLC Quantitative Analysis of Multi-Components by Single Marker and Quality Evaluation of Polygala tenuifolia Wild. Extracts.[Pubmed:29261155]

Molecules. 2017 Dec 20;22(12). pii: molecules22122276.

The quality control of Polygala tenuifolia Wild. is a major challenge in its clinical application. In this paper, a new strategy for the quality evaluation of P. tenuifolia extracts was verified through reverse-phase ultra-performance liquid chromatography (UPLC). The quantitative analysis of multi-components by a single marker (QAMS) was conducted with 3,6'-disinapoyl sucrose as an internal reference substance. Eight components (i.e., sibiricose A5, sibiricose A6, glomeratose A, tenuifoliside A, tenuifoliside B, tenuifoliside C, sibiricaxanthone B, and polygalaxanthone III) were determined based on the relative correction factors. The concentrations of these components were also determined by applying a conventional external standard method. The cosine value confirmed the consistency of the two methods (cosine ratio value >0.999920). Hierarchical cluster analysis, radar plots, and discriminant analysis were performed to classify 23 batches of P. tenuifolia extracts from Shanxi, Hebei, and Shaanxi in China. Results revealed that QAMS combined with radar plots and multivariate data analysis could accurately measure and clearly distinguish the different quality samples of P. tenuifolia. Hence, QAMS is a feasible and promising method for the quality control of P. tenuifolia.

Indirect identification of antioxidants in Polygalae Radix through their reaction with 2,2-diphenyl-1-picrylhydrazyl and subsequent HPLC-ESI-Q-TOF-MS/MS.[Pubmed:26452897]

Talanta. 2015 Nov 1;144:830-5.

A rapid and efficient method for the identification of antioxidants in the traditional Chinese medicine Polygalae Radix (PR) by HPLC-ESI-Q-TOF-MS/MS is described. The method is based on the hypothesis that upon reaction of antioxidants with 1,1-diphenyl-2-picrylhydrazyl (DPPH), the peak areas of compounds with potential antioxidant activities in the HPLC chromatogram will be significantly reduced in comparison to the untreated sample. The identity confirmation was achieved by Q-TOF-MS/MS technique. With this method, eight components were proposed possessing potent antioxidant activity. They were identified as sibiricose A5, sibiricose A6, sucrose monoester, polygalaxanthone III, tenuifoliside B, 3',6-disinapoylsucrose (DISS), sucrose diester, tenuifoliside C, respectively. DISS was proposed to be the most potent one. The antioxidant activity of DISS was evaluated by DPPH, ABTS radical scavenging assay and ferric-reducing antioxidant power (FRAP) assay in vitro. Vitamin C (Vc) was used as positive control substance. DISS showed moderate DPPH (DISS's IC50 value was 1024.17 mug/mL, Vc's was 294.68 mug/mL) and ABTS (IC50 324.13 mug/mL, Vc's was 117.50 mug/mL) free radical scavenging capacity and ferric-reducing antioxidant power. DISS can be used as a new source of natural antioxidant in foods and cosmetics.

Determination of the phytochemical composition of Jingning fang and the in vivo pharmacokinetics of its metabolites in rat plasma by UPLC-MS/MS.[Pubmed:29017076]

J Chromatogr B Analyt Technol Biomed Life Sci. 2017 Nov 1;1067:71-88.

Jingning fang (JNF) is an effective Traditional Chinese Medicine (TCM) which is used for the treatment of Attention Deficit Hyperactivity Disorder (ADHD). To clarify the bioactive constituents of JNF, a Thermo Q Exactive Plus Orbitrap mass spectrometer was used in this study. More than 127 chemical compounds were isolated and identified tentatively in the JNF extract, while 42 prototype constituents with 4 potential metabolites were identified tentatively in rat plasma. A method for simultaneous determination of polygalaxanthone III (PAIII), sibiricose A5 (A5), sibiricose A6 (A6), 3, 6'-disinapoyl sucrose (3,6'-DISS), tenuifoliside C (TEC), tenuifolin B (TNB), verbascoside (VCE), heterophyllin B (HEB) and schisandrin (SCH) in rat was developed and validated using polydatin (PLN) and psoralen (PSN) as internal standards. All calibration curves proved favorable linearity (R(2)>/=0.9923) in linear ranges. The lower limit of quantification (LLOQ) was 2.5ng/mL for PAIII, A5, 3, 6'-DISS, TNB, VCE, HEB and SCH, 1.0ng/mL for A6 and TEC, respectively. Intra-day and inter-day precisions didn't exceed 14.0% for all the analytes. Extraction recoveries and matrix effects of analytes and IS were acceptable. The validated method has been successfully applied to the pharmacokinetics (PK) studies of the nine compounds in JNF. These findings are useful for predicting the bioactive components of JNF, and will aid in optimizing dose regimens of the drug.

Description

Tenuifoliside C, isolated from polygala tenuifolia willd, significantly inhibits chlorzoxazone 6-hydroxylation catalyzed by CYP2E1.

Keywords:

tenuifoliside C,139726-37-7,Natural Products, buy tenuifoliside C , tenuifoliside C supplier , purchase tenuifoliside C , tenuifoliside C cost , tenuifoliside C manufacturer , order tenuifoliside C , high purity tenuifoliside C

Online Inquiry for:

      Fill out the information below

      • Size:Qty: - +

      * Required Fields

                                      Result: