3,6'-Disinapoyl sucroseCAS# 139891-98-8 |
Package In Stock
Quality Control & MSDS
Chemical structure
3D structure
Number of papers citing our products
Cas No. | 139891-98-8 | SDF | Download SDF |
PubChem ID | 11968389 | Appearance | Beige powder |
Formula | C34H42O19 | M.Wt | 754.68 |
Type of Compound | Phenylpropanoids | Storage | Desiccate at -20°C |
Solubility | Soluble in DMSO and methan | ||
Chemical Name | [(2R,3S,4S,5R,6R)-3,4,5-trihydroxy-6-[(2S,3S,4R,5R)-4-hydroxy-3-[(E)-3-(4-hydroxy-3,5-dimethoxyphenyl)prop-2-enoyl]oxy-2,5-bis(hydroxymethyl)oxolan-2-yl]oxyoxan-2-yl]methyl (E)-3-(4-hydroxy-3,5-dimethoxyphenyl)prop-2-enoate | ||
SMILES | COC1=CC(=CC(=C1O)OC)C=CC(=O)OCC2C(C(C(C(O2)OC3(C(C(C(O3)CO)O)OC(=O)C=CC4=CC(=C(C(=C4)OC)O)OC)CO)O)O)O | ||
Standard InChIKey | FHIJMQWMMZEFBL-OPSYHMPNSA-N | ||
General tips | For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months. We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months. Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it. |
||
About Packaging | 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial. 2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial. 3. Try to avoid loss or contamination during the experiment. |
||
Shipping Condition | Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request. |
Description | 3,6'-Disinapoyl sucrose has neuroprotective effect and antidepressive activity in rats, at least in part, by increasing expression of cyclic AMP response element (CRE)-binding protein (CREB) and its downstream target protein, brain-derived neurotrophic factor (BDNF). 3,6'-Disinapoyl sucrose protect neuron cells from glutamate-induced excitotoxicity include the downregulation of proapoptotic gene Bax and the upregulation of antiapoptotic gene Bcl-2. |
Targets | cAMP | ERK | PKA | PI3K | Bcl-2/Bax | MAO | SOD | BDNF |
In vitro | Protection of SH-SY5Y neuronal cells from glutamate-induced apoptosis by 3,6'-disinapoyl sucrose, a bioactive compound isolated from Radix Polygala.[Pubmed: 21836813]J Biomed Biotechnol. 2012;2012:1-5.The neuroprotective effects of 3,6'-Disinapoyl sucrose (DISS) from Radix Polygala against glutamate-induced SH-SY5Y neuronal cells injury were evaluated in the present study. |
In vivo | Possible mechanism of the antidepressant effect of 3,6'-disinapoyl sucrose from Polygala tenuifolia Willd.[Pubmed: 21585386]J Pharm Pharmacol. 2011 Jun;63(6):869-74.The present study was designed to observe the effects of 3,6'-Disinapoyl sucrose (DISS), an active oligosaccharide ester component obtained from the roots of Polygala tenuifolia Willd., on behavioral and biochemical aspects of depression induced by chronic mild stress (CMS) in rats. It is the first exploration of the possible association between DISS's antidepressant-like effects and biochemical markers of depression, and involved measuring monoamine oxidase (MAO) activity, cortisol levels, superoxide dismutase (SOD) activity and malondialdehyde (MDA) levels.
|
Cell Research | Neuroprotective effects of 3,6'-disinapoyl sucrose through increased BDNF levels and CREB phosphorylation via the CaMKII and ERK1/2 pathway.[Pubmed: 24488601]J Mol Neurosci. 2014 Aug;53(4):600-7.3,6'-Disinapoyl sucrose can have neuroprotective effects and antidepressive activity in rats, at least in part, by increased expression of cyclic AMP response element (CRE)-binding protein (CREB) and its downstream target protein, brain-derived neurotrophic factor (BDNF). The aim of the present study was to explore the mechanism of 3,6'-Disinapoyl sucrose-modulated BDNF and CREB expression. |
Animal Research | Antidepressant-like effects of 3,6'-disinapoyl sucrose on hippocampal neuronal plasticity and neurotrophic signal pathway in chronically mild stressed rats.[Pubmed: 20018220]Neurochem Int. 2010 Feb;56(3):461-5.Recent studies suggest that the behavioral effects of chronic antidepressant treatment are mediated by stimulation of hippocampal neuronal plasticity and neurogenesis. |
3,6'-Disinapoyl sucrose Dilution Calculator
3,6'-Disinapoyl sucrose Molarity Calculator
1 mg | 5 mg | 10 mg | 20 mg | 25 mg | |
1 mM | 1.3251 mL | 6.6253 mL | 13.2506 mL | 26.5013 mL | 33.1266 mL |
5 mM | 0.265 mL | 1.3251 mL | 2.6501 mL | 5.3003 mL | 6.6253 mL |
10 mM | 0.1325 mL | 0.6625 mL | 1.3251 mL | 2.6501 mL | 3.3127 mL |
50 mM | 0.0265 mL | 0.1325 mL | 0.265 mL | 0.53 mL | 0.6625 mL |
100 mM | 0.0133 mL | 0.0663 mL | 0.1325 mL | 0.265 mL | 0.3313 mL |
* Note: If you are in the process of experiment, it's necessary to make the dilution ratios of the samples. The dilution data above is only for reference. Normally, it's can get a better solubility within lower of Concentrations. |
Calcutta University
University of Minnesota
University of Maryland School of Medicine
University of Illinois at Chicago
The Ohio State University
University of Zurich
Harvard University
Colorado State University
Auburn University
Yale University
Worcester Polytechnic Institute
Washington State University
Stanford University
University of Leipzig
Universidade da Beira Interior
The Institute of Cancer Research
Heidelberg University
University of Amsterdam
University of Auckland
TsingHua University
The University of Michigan
Miami University
DRURY University
Jilin University
Fudan University
Wuhan University
Sun Yat-sen University
Universite de Paris
Deemed University
Auckland University
The University of Tokyo
Korea University
- Milameline hydrochloride
Catalog No.:BCC7427
CAS No.:139886-04-7
- Cucurbitacin E-2-O-Glucoside
Catalog No.:BCC8156
CAS No.:1398-78-3
- Sildenafil
Catalog No.:BCC1947
CAS No.:139755-83-2
- tenuifoliside C
Catalog No.:BCN8299
CAS No.:139726-37-7
- Tenuifoliside B
Catalog No.:BCC9251
CAS No.:139726-36-6
- Tenuifoliside A
Catalog No.:BCN2893
CAS No.:139726-35-5
- Isodunnianol
Catalog No.:BCN6213
CAS No.:139726-30-0
- Dunnianol
Catalog No.:BCN6212
CAS No.:139726-29-7
- BS-181 HCl
Catalog No.:BCC2537
CAS No.:1397219-81-6
- Yunnanxane
Catalog No.:BCN6702
CAS No.:139713-81-8
- Amphotericin B
Catalog No.:BCN2564
CAS No.:1397-89-3
- Gardenine
Catalog No.:BCN6211
CAS No.:139682-36-3
- Globularin
Catalog No.:BCN6215
CAS No.:1399-49-1
- Drahebenine
Catalog No.:BCN7044
CAS No.:1399049-43-4
- Alpinone 3-acetate
Catalog No.:BCN7768
CAS No.:139906-49-3
- Palbinone
Catalog No.:BCN3930
CAS No.:139954-00-0
- Cinnamic acid
Catalog No.:BCN6217
CAS No.:140-10-3
- Nithiamide
Catalog No.:BCC4687
CAS No.:140-40-9
- Pentamidine isethionate
Catalog No.:BCC5644
CAS No.:140-64-7
- 4-Allylanisole
Catalog No.:BCC8674
CAS No.:140-67-0
- Dimethylolurea
Catalog No.:BCC8943
CAS No.:140-95-4
- Nystatin (Fungicidin)
Catalog No.:BCC4813
CAS No.:1400-61-9
- 4μ8C
Catalog No.:BCC4754
CAS No.:14003-96-4
- Eucalyptin acetate
Catalog No.:BCN6216
CAS No.:14004-35-4
Protection of SH-SY5Y neuronal cells from glutamate-induced apoptosis by 3,6'-disinapoyl sucrose, a bioactive compound isolated from Radix Polygala.[Pubmed:21836813]
J Biomed Biotechnol. 2012;2012:1-5.
The neuroprotective effects of 3,6'-disinapoyl sucrose (DISS) from Radix Polygala against glutamate-induced SH-SY5Y neuronal cells injury were evaluated in the present study. SH-SY5Y neuronal cells were pretreated with glutamate (8 mM) for 30 min followed by cotreatment with DISS for 12 h. Cell viability was determined by (3,4,5-dimethylthiazol-2-yl)-2,5-diphenylte-trazolium bromide (MTT) assay, and apoptosis was confirmed by cell morphology and flow cytometry assay, evaluated with propidium iodide dye. Treatment with DISS (0.6, 6, and 60 mumol/L) increased cell viability dose dependently, inhibited LDH release, and attenuated apoptosis. The mechanisms by which DISS protected neuron cells from glutamate-induced excitotoxicity included the downregulation of proapoptotic gene Bax and the upregulation of antiapoptotic gene Bcl-2. The present findings indicated that DISS exerts neuroprotective effects against glutamate toxicity, which might be of importance and contribute to its clinical efficacy for the treatment of neurodegenerative diseases.
Possible mechanism of the antidepressant effect of 3,6'-disinapoyl sucrose from Polygala tenuifolia Willd.[Pubmed:21585386]
J Pharm Pharmacol. 2011 Jun;63(6):869-74.
OBJECTIVE: The present study was designed to observe the effects of 3,6'-disinapoyl sucrose (DISS), an active oligosaccharide ester component obtained from the roots of Polygala tenuifolia Willd., on behavioral and biochemical aspects of depression induced by chronic mild stress (CMS) in rats. It is the first exploration of the possible association between DISS's antidepressant-like effects and biochemical markers of depression, and involved measuring monoamine oxidase (MAO) activity, cortisol levels, superoxide dismutase (SOD) activity and malondialdehyde (MDA) levels. METHODS: Rats were exposed to stressor once daily for consecutive 5 weeks. DISS and a positive control drug, fluoxetine, were administered via gastric intubation to once daily for consecutive 3 weeks from the third week. KEY FINDINGS: The results showed that rats subjected to CMS exhibit a reduction in sucrose intake. Conversely, brain MAO-A and MAO-B activity, plasma cortisol levels, and MDA levels were increased, while SOD activity was decreased following CMS exposures. DISS significantly inhibited MAO-A and MAO-B activity and blocked plasma elevated cortisol level, an indicator of the hypothalamic-pituitary-adrenal (HPA) axis. In addition, DISS increases SOD activity, inhibits lipid peroxidation, and lessens production of MDA. CONCLUSION: These results suggest that DISS may possess potent and rapid antidepressant properties, which are mediated via MAO, the HPA axis and oxidative systems. These antidepressant actions make DISS a potentially valuable drug for the treatment of depression.
Antidepressant-like effects of 3,6'-disinapoyl sucrose on hippocampal neuronal plasticity and neurotrophic signal pathway in chronically mild stressed rats.[Pubmed:20018220]
Neurochem Int. 2010 Feb;56(3):461-5.
Recent studies suggest that the behavioral effects of chronic antidepressant treatment are mediated by stimulation of hippocampal neuronal plasticity and neurogenesis. The present study was designed to examine the effects of 3,6'-disinapoyl sucrose (DISS), a bioactive component of Polygala tenuifolia Willd, on the expressions of four plasticity-associated genes: cell adhesion molecule L1 (CAM-L1), laminin, cAMP response element binding protein (CREB) and brain-derived neurotrophic factor (BDNF) in hippocampus, all of which are involved in neuronal plasticity and neurite outgrowth. We confirmed that chronic stress in rats caused a reduction in sensitivity to reward (sucrose consumption) and a decrease in mRNA levels of CAM-L1, laminin, and BDNF, together with a decrease in protein levels of phosphorylated CREB and BDNF. Repeated administration of DISS for 21 days at doses of 5, 10 and 20mg/kg reversed stress-induced alterations in sucrose consumption and these target mRNA and protein levels. In conclusion, increased expressions in the hippocampus of three noradrenergic-regulated plasticity genes and one neurotrophic factor may be one of the molecular and cellular mechanisms underlying the antidepressant action of DISS in chronic mild stress (CMS) rats.
Neuroprotective effects of 3,6'-disinapoyl sucrose through increased BDNF levels and CREB phosphorylation via the CaMKII and ERK1/2 pathway.[Pubmed:24488601]
J Mol Neurosci. 2014 Aug;53(4):600-7.
3,6'-Disinapoyl sucrose (DISS) is an oligosaccharide ester natural product originating from the root of wild Polygala tenuifolia. Our previous reports suggested that DISS can have neuroprotective effects and antidepressive activity in rats, at least in part, by increased expression of cyclic AMP response element (CRE)-binding protein (CREB) and its downstream target protein, brain-derived neurotrophic factor (BDNF). The aim of the present study was to explore the mechanism of DISS-modulated BDNF and CREB expression. In this study, we confirmed its neuroprotective effect by showing that DISS, at concentrations above 30 muM, could promote the neuron cell viability and protected the glutamate and H2O2-induced toxicity in the human neuroblastoma (SH-SY5Y) cell line. DISS treatment also increased acute (from 15 to 30 min) BDNF expression and CREB phosphorylation in a dose-dependent manner. Pharmacological inhibition of mitogen-activated protein kinase 1 (ERK1/2), CaMKII, and Trk (with U0126, KN93, or K252a, respectively) partially attenuated the stimulatory effect of DISS on phospho-CREB and BDNF expression; however, it was not inhibited by pharmacological inhibition of PKA or PI3K (with H89 and LY294002, respectively). The results are consistent with the effects of DISS on CRE-directed gene transcription, as U0126 and KN-93 treatment also blocked the DISS-induced expression of the CRE-luciferase reporter gene. The results from the present study suggest that DISS-mediated regulation of BDNF gene expression is associated with CREB-mediated transcription of BDNF and upstream activation of ERK1/2 and CaMKII. Finally, DISS may exert neuroprotective and antidepressant effects through these signaling pathways in neuronal cells.