Home >> Research Area >>Natural Products>>Flavonoids>> 6,7,4'-Trihydroxyflavanone

6,7,4'-Trihydroxyflavanone

CAS# 189689-31-4

6,7,4'-Trihydroxyflavanone

Catalog No. BCN0706----Order now to get a substantial discount!

Product Name & Size Price Stock
6,7,4'-Trihydroxyflavanone: 5mg $828 In Stock
6,7,4'-Trihydroxyflavanone: 10mg Please Inquire In Stock
6,7,4'-Trihydroxyflavanone: 20mg Please Inquire Please Inquire
6,7,4'-Trihydroxyflavanone: 50mg Please Inquire Please Inquire
6,7,4'-Trihydroxyflavanone: 100mg Please Inquire Please Inquire
6,7,4'-Trihydroxyflavanone: 200mg Please Inquire Please Inquire
6,7,4'-Trihydroxyflavanone: 500mg Please Inquire Please Inquire
6,7,4'-Trihydroxyflavanone: 1000mg Please Inquire Please Inquire

Quality Control of 6,7,4'-Trihydroxyflavanone

Number of papers citing our products

Chemical structure

6,7,4'-Trihydroxyflavanone

Chemical Properties of 6,7,4'-Trihydroxyflavanone

Cas No. 189689-31-4 SDF Download SDF
PubChem ID N/A Appearance Brown powder
Formula C15H12O5 M.Wt 272.3
Type of Compound Flavonoids Storage Desiccate at -20°C
Solubility Soluble in Chloroform,Dichloromethane,Ethyl Acetate,DMSO,Acetone,etc.
General tips For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months.
We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months.
Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it.
About Packaging 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial.
2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial.
3. Try to avoid loss or contamination during the experiment.
Shipping Condition Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request.

6,7,4'-Trihydroxyflavanone Dilution Calculator

Concentration (start)
x
Volume (start)
=
Concentration (final)
x
Volume (final)
 
 
 
C1
V1
C2
V2

calculate

6,7,4'-Trihydroxyflavanone Molarity Calculator

Mass
=
Concentration
x
Volume
x
MW*
 
 
 
g/mol

calculate

Preparing Stock Solutions of 6,7,4'-Trihydroxyflavanone

1 mg 5 mg 10 mg 20 mg 25 mg
1 mM 3.6724 mL 18.3621 mL 36.7242 mL 73.4484 mL 91.8105 mL
5 mM 0.7345 mL 3.6724 mL 7.3448 mL 14.6897 mL 18.3621 mL
10 mM 0.3672 mL 1.8362 mL 3.6724 mL 7.3448 mL 9.1811 mL
50 mM 0.0734 mL 0.3672 mL 0.7345 mL 1.469 mL 1.8362 mL
100 mM 0.0367 mL 0.1836 mL 0.3672 mL 0.7345 mL 0.9181 mL
* Note: If you are in the process of experiment, it's necessary to make the dilution ratios of the samples. The dilution data above is only for reference. Normally, it's can get a better solubility within lower of Concentrations.

Organizitions Citing Our Products recently

 
 
 

Calcutta University

University of Minnesota

University of Maryland School of Medicine

University of Illinois at Chicago

The Ohio State University

University of Zurich

Harvard University

Colorado State University

Auburn University

Yale University

Worcester Polytechnic Institute

Washington State University

Stanford University

University of Leipzig

Universidade da Beira Interior

The Institute of Cancer Research

Heidelberg University

University of Amsterdam

University of Auckland
TsingHua University
TsingHua University
The University of Michigan
The University of Michigan
Miami University
Miami University
DRURY University
DRURY University
Jilin University
Jilin University
Fudan University
Fudan University
Wuhan University
Wuhan University
Sun Yat-sen University
Sun Yat-sen University
Universite de Paris
Universite de Paris
Deemed University
Deemed University
Auckland University
Auckland University
The University of Tokyo
The University of Tokyo
Korea University
Korea University
Featured Products
New Products
 

References on 6,7,4'-Trihydroxyflavanone

6,7,4'-Trihydroxyflavanone Mitigates Methamphetamine-Induced Neurotoxicity in SH-SY5y Cells via Nrf2/heme Oxyganase-1 and PI3K/Akt/mTOR Signaling Pathways.[Pubmed:33922144]

Molecules. 2021 Apr 22;26(9). pii: molecules26092442.

Methamphetamine (METH) is a synthetic psychostimulant drug that has detrimental effects on the health of its users. Although it has been investigated as a cause of neurodegenerative disease due to its neurotoxicity, whether small molecules derived from natural products attenuate these side effects remains elusive. 6,7,4'-trihydroxyflavanone (THF) is a flavanone family that possesses various pharmacological activities, including anti-rheumatic, anti-ischemic, anti-inflammatory, anti-osteoclastogenic, and protective effects against METH-induced deactivation of T cells. However, little is known about whether THF protects neuronal cells from METH-induced neurotoxicity. Here, we investigated the protective effects of THF on neurotoxicity induced by METH exposure by enhancing the Nrf2/HO-1 and PI3K/Akt/mTOR signaling pathways in SH-SY5y cells. Treatment with THF did not lead to cytotoxicity, but attenuated METH-induced neurotoxicity by modulating the expression of apoptosis-related proteins, METH-induced oxidative stress, and PI3K/Akt/mTOR phosphorylation in METH-exposed SH-SY5y cells. Moreover, we found THF induced Nrf2 nuclear translocation and HO-1 expression. An inhibitor assay confirmed that the induction of HO-1 by THF attenuates METH-induced neurotoxicity. Therefore, we suggest that THF preserves neuronal cells from METH-induced neurotoxicity by upregulating HO-1 expression through the Nrf2 and PI3K/Akt/mTOR signaling pathways. Thus, THF has therapeutic potential for use in the treatment of METH-addicts suffering from neurodegenerative diseases.

6,7,4'-Trihydroxyflavanone Protects against Dextran Sulfate Sodium-Induced Colitis by Regulating the Activity of T Cells and Colon Cells In Vivo.[Pubmed:33669855]

Int J Mol Sci. 2021 Feb 19;22(4). pii: ijms22042083.

Colitis is a multifactorial disorder that mostly occurs in the gastrointestinal tract. Despite improvements in mucosal inflammation research, little is known regarding the small bioactive molecules that are beneficial for regulating T cells and colon cell activity. 6,7,4'-trihydroxyflavanone (THF) is a flavanone that possesses anti-osteoclastogenesis activity and exerts protective effects against methamphetamine-induced immunotoxicity. Whether THF mitigates intestinal inflammation by regulating T cells and colon cell activity remains unknown. In the present study, Jurkat and HT-29 cells were used for in vitro experiments, and dextran sulfate sodium (DSS)-induced colitis model in mice was used for in vivo experiment. We observed that THF did not have a negative effect on the viability of Jurkat and HT-29 cells. Quantitative PCR and Western blot analysis revealed that THF regulates the activity of Jurkat cells and HT-29 cells via the NFkappaB and MAPK pathways under stimulated conditions. In the DSS-induced colitis model, oral administration of THF attenuated the manifestations of DSS-induced colitis, including a reduction in body weight, shrinkage of the colon, and enhanced expression of pro-inflammatory cytokines in the colon and mesenteric lymph nodes. These data suggest that THF alleviates DSS-induced colitis by modulating the activity of T cells and colon cells in vivo.

Protective Effects of 6,7,4'-Trihydroxyflavanone on Hypoxia-Induced Neurotoxicity by Enhancement of HO-1 through Nrf2 Signaling Pathway.[Pubmed:33668397]

Antioxidants (Basel). 2021 Feb 24;10(3). pii: antiox10030341.

Since hypoxia-induced neurotoxicity is one of the major causes of neurodegenerative disorders, including the Alzheimer's disease, continuous efforts to find a novel antioxidant from natural products are required for public health. 6,7,4'-trihydroxyflavanone (THF), isolated from Dalbergia odorifera, has been shown to inhibit osteoclast formation and have an antibacterial activity. However, no evidence has reported whether THF has a protective role against hypoxia-induced neurotoxicity. In this study, we found that THF is not cytotoxic, but pre-treatment with THF has a cytoprotective effect on CoCl2-induced hypoxia by restoring the expression of anti-apoptotic proteins in SH-SY5y cells. In addition, pre-treatment with THF suppressed CoCl2-induced hypoxia-related genes including HIF1alpha, p53, VEGF, and GLUT1 at the mRNA and protein levels. Pre-treatment with THF also attenuated the oxidative stress occurred by CoCl2-induced hypoxia by preserving antioxidant proteins, including SOD and CAT. We revealed that treatment with THF promotes HO-1 expression through Nrf2 nuclear translocation. An inhibitor assay using tin protoporphyrin IX (SnPP) confirmed that the enhancement of HO-1 by pre-treatment with THF protects SH-SY5y cells from CoCl2-induced neurotoxicity under hypoxic conditions. Our results demonstrate the advantageous effects of THF against hypoxia-induced neurotoxicity through the HO-1/Nrf2 signaling pathway and provide a therapeutic insight for neurodegenerative disorders.

Phenolic Metabolites of Dalea ornata Affect Both Survival and Motility of the Human Pathogenic Hookworm Ancylostoma ceylanicum.[Pubmed:27584977]

J Nat Prod. 2016 Sep 23;79(9):2296-303.

Hookworms are ubiquitous human parasites, infecting nearly one billion people worldwide, and are the leading cause of anemia and malnutrition in resource-limited countries. Current drug treatments rely on the benzimidazole derivatives albendazole and mebendazole, but there is emerging resistance to these drugs. As part of a larger screening effort, using a hamster-based ex vivo assay, anthelmintic activity toward Ancylostoma ceylanicum was observed in the crude extract of aerial parts of Dalea ornata. These studies have led to the isolation and characterization of phenolic metabolites 1-10. The structures were determined by 1D and 2D NMR spectroscopy, and the absolute configuration of 1 was assigned using electronic circular dichroism data. The new compound, (2S)-8-(3-methylbut-2-en-1-yl)-6,7,4'-trihydroxyflavanone (1), was weakly active at 7.3 muM, with 17% reduction in survival of the hookworms after 5 days. The rotenoids deguelin (9) and tephrosin (10), predictably perhaps, were the most active, with complete worm mortality observed by day 4 (or earlier) at 6.3 and 6.0 muM, respectively. The effects of 1-10 on hookworm motility and on toxicity to hamster splenocytes were also explored as important measures of treatment potential.

Flavonoid 6-hydroxylase from soybean (Glycine max L.), a novel plant P-450 monooxygenase.[Pubmed:11027686]

J Biol Chem. 2001 Jan 19;276(3):1688-95.

Cytochrome P-450-dependent hydroxylases are typical enzymes for the modification of basic flavonoid skeletons. We show in this study that CYP71D9 cDNA, previously isolated from elicitor-induced soybean (Glycine max L.) cells, codes for a protein with a novel hydroxylase activity. When heterologously expressed in yeast, this protein bound various flavonoids with high affinity (1.6 to 52 microm) and showed typical type I absorption spectra. These flavonoids were hydroxylated at position 6 of both resorcinol- and phloroglucinol-based A-rings. Flavonoid 6-hydroxylase (CYP71D9) catalyzed the conversion of flavanones more efficiently than flavones. Isoflavones were hardly hydroxylated. As soybean produces isoflavonoid constituents possessing 6,7-dihydroxy substitution patterns on ring A, the biosynthetic relationship of flavonoid 6-hydroxylase to isoflavonoid biosynthesis was investigated. Recombinant 2-hydroxyisoflavanone synthase (CYP93C1v2) efficiently used 6,7,4'-trihydroxyflavanone as substrate. For its structural identification, the chemically labile reaction product was converted to 6,7,4'-trihydroxyisoflavone by acid treatment. The structures of the final reaction products for both enzymes were confirmed by NMR and mass spectrometry. Our results strongly support the conclusion that, in soybean, the 6-hydroxylation of the A-ring occurs before the 1,2-aryl migration of the flavonoid B-ring during isoflavanone formation. This is the first identification of a flavonoid 6-hydroxylase cDNA from any plant species.

Keywords:

6,7,4'-Trihydroxyflavanone,189689-31-4,Natural Products, buy 6,7,4'-Trihydroxyflavanone , 6,7,4'-Trihydroxyflavanone supplier , purchase 6,7,4'-Trihydroxyflavanone , 6,7,4'-Trihydroxyflavanone cost , 6,7,4'-Trihydroxyflavanone manufacturer , order 6,7,4'-Trihydroxyflavanone , high purity 6,7,4'-Trihydroxyflavanone

Online Inquiry for:

      Fill out the information below

      • Size:Qty: - +

      * Required Fields

                                      Result: