Tetrahydrozoline HClCAS# 522-48-5 |
Quality Control & MSDS
Number of papers citing our products
Chemical structure
3D structure
Cas No. | 522-48-5 | SDF | Download SDF |
PubChem ID | 10648 | Appearance | Powder |
Formula | C13H17ClN2 | M.Wt | 236.74 |
Type of Compound | N/A | Storage | Desiccate at -20°C |
Solubility | H2O : ≥ 50 mg/mL (211.20 mM) DMSO : 16.67 mg/mL (70.41 mM; Need ultrasonic) *"≥" means soluble, but saturation unknown. | ||
Chemical Name | 2-(1,2,3,4-tetrahydronaphthalen-1-yl)-4,5-dihydro-1H-imidazole;hydrochloride | ||
SMILES | C1CC(C2=CC=CC=C2C1)C3=NCCN3.Cl | ||
Standard InChIKey | BJORNXNYWNIWEY-UHFFFAOYSA-N | ||
Standard InChI | InChI=1S/C13H16N2.ClH/c1-2-6-11-10(4-1)5-3-7-12(11)13-14-8-9-15-13;/h1-2,4,6,12H,3,5,7-9H2,(H,14,15);1H | ||
General tips | For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months. We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months. Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it. |
||
About Packaging | 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial. 2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial. 3. Try to avoid loss or contamination during the experiment. |
||
Shipping Condition | Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request. |
Tetrahydrozoline HCl Dilution Calculator
Tetrahydrozoline HCl Molarity Calculator
1 mg | 5 mg | 10 mg | 20 mg | 25 mg | |
1 mM | 4.224 mL | 21.1202 mL | 42.2404 mL | 84.4809 mL | 105.6011 mL |
5 mM | 0.8448 mL | 4.224 mL | 8.4481 mL | 16.8962 mL | 21.1202 mL |
10 mM | 0.4224 mL | 2.112 mL | 4.224 mL | 8.4481 mL | 10.5601 mL |
50 mM | 0.0845 mL | 0.4224 mL | 0.8448 mL | 1.6896 mL | 2.112 mL |
100 mM | 0.0422 mL | 0.2112 mL | 0.4224 mL | 0.8448 mL | 1.056 mL |
* Note: If you are in the process of experiment, it's necessary to make the dilution ratios of the samples. The dilution data above is only for reference. Normally, it's can get a better solubility within lower of Concentrations. |
Calcutta University
University of Minnesota
University of Maryland School of Medicine
University of Illinois at Chicago
The Ohio State University
University of Zurich
Harvard University
Colorado State University
Auburn University
Yale University
Worcester Polytechnic Institute
Washington State University
Stanford University
University of Leipzig
Universidade da Beira Interior
The Institute of Cancer Research
Heidelberg University
University of Amsterdam
University of Auckland
TsingHua University
The University of Michigan
Miami University
DRURY University
Jilin University
Fudan University
Wuhan University
Sun Yat-sen University
Universite de Paris
Deemed University
Auckland University
The University of Tokyo
Korea University
Tetrahydrozoline HCl is an imidazoline derivative with alpha receptor agonist activity.
- Lochnerine
Catalog No.:BCN5667
CAS No.:522-47-4
- Norsanguinarine
Catalog No.:BCN3714
CAS No.:522-30-5
- Deguelin
Catalog No.:BCN4804
CAS No.:522-17-8
- Quercitrin
Catalog No.:BCN5665
CAS No.:522-12-3
- Evoxine
Catalog No.:BCN5664
CAS No.:522-11-2
- N'-Methylammodendrine
Catalog No.:BCN2147
CAS No.:52196-10-8
- 7-Hydroxy-2,3,4,5-tetrahydro-1H-benzofuro[2,3-c]azepin-1-one
Catalog No.:BCC3960
CAS No.:521937-07-5
- Piperitol
Catalog No.:BCN3968
CAS No.:52151-92-5
- H-Tyr(Bzl)-OBzl.HCl
Catalog No.:BCC3131
CAS No.:52142-01-5
- 3-O-Acetylpinobanksin
Catalog No.:BCN5660
CAS No.:52117-69-8
- 2,4-Dihydroxy-6-methoxy-3-formylacetophenone
Catalog No.:BCN1430
CAS No.:52117-67-6
- Karanjin
Catalog No.:BCN8370
CAS No.:521-88-0
- Dequalinium Chloride
Catalog No.:BCC4998
CAS No.:522-51-0
- Allo-Yohimbine
Catalog No.:BCN3487
CAS No.:522-94-1
- Tetrahydroberberine
Catalog No.:BCN2648
CAS No.:522-97-4
- Lamalbid
Catalog No.:BCN3750
CAS No.:52212-87-0
- 3-Epicorosolic acid
Catalog No.:BCN5666
CAS No.:52213-27-1
- Ciprofibrate
Catalog No.:BCC2266
CAS No.:52214-84-3
- Kaempferol-4'-O-beta-D-glucopyranoside
Catalog No.:BCN8130
CAS No.:52222-74-9
- Parathyroid hormone (1-34) (human)
Catalog No.:BCC1046
CAS No.:52232-67-4
- Isomucronulatol
Catalog No.:BCN1428
CAS No.:52250-35-8
- CGP 57380
Catalog No.:BCC5279
CAS No.:522629-08-9
- 3,5-Diprenyl-4-hydroxybenzaldehyde
Catalog No.:BCN4624
CAS No.:52275-04-4
- Ginsenoside Rf
Catalog No.:BCN1075
CAS No.:52286-58-5
Spectrophotometric Determination of Distigmine Bromide, Cyclopentolate HCl, Diaveridine HCl and Tetrahydrozoline HCl via Charge Transfer Complex Formation with TCNQ and TCNE Reagents.[Pubmed:26330858]
Iran J Pharm Res. 2015 Summer;14(3):701-14.
The purpose of this investigation was directed to propose sensitive, accurate and reproducible methods of analysis that can be applied to determine distigmine bromide (DTB), cyclopentolate hydrochloride (CPHC), diaveridine hydrochloride (DVHC) and tetrahydrozoline hydrochloride (THHC) drugs in pure form and pharmaceutical preparations via charge-transfer complex formation with 7,7,8,8-tetracyanoquinodimethane (TCNQ) and tetracyanoethylene (TCNE) reagents. Spectrophotometric method involve the addition a known excess of TCNQ or TCNE reagents to DTB, CPHC, DVHC and THHC drugs in acetonitrile, followed by the measurement of the absorbance of the CT complexes at the selected wavelength. The reaction stoichiometry is found to be 1:1 [drug]: [TCNQ or TCNE]. The absorbance is found to increase linearly with concentration of the drugs under investigation which is corroborated by the correlation coefficients of 0.9954-0.9981. The system obeys Beer's law for 6-400, 20-500, 1-180 and 60-560 microg mL(-1) and 80-600, 10-300, 1-60 and 80-640 microg mL(-1) for DTB, CPHC, DVHC and THHC drugs using TCNQ and TCNE reagents, respectively. The apparent molar absorptivity, sandell sensitivity, the limits of detection and quantification are also reported for the spectrophotometric method. Intra- and inter-day precision and accuracy of the method were evaluated as per ICH guidelines. The method was successfully applied to the assay of DTB, CPHC, DVHC and THHC drugs in formulations and the results were compared with those of a reference method by applying Student's t and F-tests. No interference was observed from common pharmaceutical excipients.