UNC 3230Potent and selective PIP5K1C inhibitor; antinociceptive CAS# 1031602-63-7 |
2D Structure
- AZ505 ditrifluoroacetate
Catalog No.:BCC4265
CAS No.:1035227-44-1
- UNC0638
Catalog No.:BCC1135
CAS No.:1255580-76-7
- EPZ005687
Catalog No.:BCC2219
CAS No.:1396772-26-1
- UNC0379
Catalog No.:BCC8055
CAS No.:1620401-82-2
Quality Control & MSDS
3D structure
Package In Stock
Number of papers citing our products
Cas No. | 1031602-63-7 | SDF | Download SDF |
PubChem ID | 46355372 | Appearance | Powder |
Formula | C17H20N4O2S | M.Wt | 344.43 |
Type of Compound | N/A | Storage | Desiccate at -20°C |
Solubility | Soluble to 100 mM in DMSO | ||
Chemical Name | 2-anilino-5-(cyclohexanecarbonylamino)-1,3-thiazole-4-carboxamide | ||
SMILES | C1CCC(CC1)C(=O)NC2=C(N=C(S2)NC3=CC=CC=C3)C(=O)N | ||
Standard InChIKey | RZCNASHHHSKTGP-UHFFFAOYSA-N | ||
Standard InChI | InChI=1S/C17H20N4O2S/c18-14(22)13-16(21-15(23)11-7-3-1-4-8-11)24-17(20-13)19-12-9-5-2-6-10-12/h2,5-6,9-11H,1,3-4,7-8H2,(H2,18,22)(H,19,20)(H,21,23) | ||
General tips | For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months. We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months. Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it. |
||
About Packaging | 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial. 2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial. 3. Try to avoid loss or contamination during the experiment. |
||
Shipping Condition | Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request. |
Description | Potent and selective PIP5K1C inhibitor (IC50 = 41 nM). Exhibits selectivity for PIP5K1C over PIP5K1A, the PI 3-kinase family and a panel of other kinases. Reduces PIP2 levels and LPA-induced calcium signaling in dorsal root ganglia (DRG) neurons in vitro. Reduces nociception in mouse models of chronic pain. |
UNC 3230 Dilution Calculator
UNC 3230 Molarity Calculator
1 mg | 5 mg | 10 mg | 20 mg | 25 mg | |
1 mM | 2.9033 mL | 14.5167 mL | 29.0335 mL | 58.067 mL | 72.5837 mL |
5 mM | 0.5807 mL | 2.9033 mL | 5.8067 mL | 11.6134 mL | 14.5167 mL |
10 mM | 0.2903 mL | 1.4517 mL | 2.9033 mL | 5.8067 mL | 7.2584 mL |
50 mM | 0.0581 mL | 0.2903 mL | 0.5807 mL | 1.1613 mL | 1.4517 mL |
100 mM | 0.029 mL | 0.1452 mL | 0.2903 mL | 0.5807 mL | 0.7258 mL |
* Note: If you are in the process of experiment, it's necessary to make the dilution ratios of the samples. The dilution data above is only for reference. Normally, it's can get a better solubility within lower of Concentrations. |
Calcutta University
University of Minnesota
University of Maryland School of Medicine
University of Illinois at Chicago
The Ohio State University
University of Zurich
Harvard University
Colorado State University
Auburn University
Yale University
Worcester Polytechnic Institute
Washington State University
Stanford University
University of Leipzig
Universidade da Beira Interior
The Institute of Cancer Research
Heidelberg University
University of Amsterdam
University of Auckland
TsingHua University
The University of Michigan
Miami University
DRURY University
Jilin University
Fudan University
Wuhan University
Sun Yat-sen University
Universite de Paris
Deemed University
Auckland University
The University of Tokyo
Korea University
- 4-(4-(Dimethylamino)-1-(4-fluorophenyl)-1-hydroxybutyl)-3-(hydroxymethyl)benzonitrile hydrobromide
Catalog No.:BCC8648
CAS No.:103146-26-5
- ABT-046
Catalog No.:BCC1326
CAS No.:1031336-60-3
- Kinetensin (human)
Catalog No.:BCC5845
CAS No.:103131-69-7
- 2-Amino-6-chloropurine
Catalog No.:BCC8540
CAS No.:10310-21-1
- Bakuchiol
Catalog No.:BCN5845
CAS No.:10309-37-2
- AS 2034178
Catalog No.:BCC7996
CAS No.:1030846-42-4
- MK-8245
Catalog No.:BCC2299
CAS No.:1030612-90-8
- Daptomycin
Catalog No.:BCC1057
CAS No.:103060-53-3
- Ethyl 3-(pyridin-2-ylamino)propanoate
Catalog No.:BCC8973
CAS No.:103041-38-9
- CTCE 9908
Catalog No.:BCC6366
CAS No.:1030384-98-5
- MK-4305
Catalog No.:BCC1760
CAS No.:1030377-33-3
- Alterlactone
Catalog No.:BCN7261
CAS No.:1030376-89-6
- 14-Norpseurotin A
Catalog No.:BCN7262
CAS No.:1031727-34-0
- Pranlukast
Catalog No.:BCC4827
CAS No.:103177-37-3
- Fmoc-Tyr(3,5-I2)-OH
Catalog No.:BCC3264
CAS No.:103213-31-6
- Fmoc-Cys(Trt)-OH
Catalog No.:BCC3479
CAS No.:103213-32-7
- A939572
Catalog No.:BCC5305
CAS No.:1032229-33-6
- D-Arabinose
Catalog No.:BCN3791
CAS No.:10323-20-3
- MK-2206 dihydrochloride
Catalog No.:BCC1274
CAS No.:1032350-13-2
- L-655,240
Catalog No.:BCC7156
CAS No.:103253-15-2
- BAY 80-6946 (Copanlisib)
Catalog No.:BCC4986
CAS No.:1032568-63-0
- GNE-477
Catalog No.:BCC8049
CAS No.:1032754-81-6
- GDC-0980 (RG7422)
Catalog No.:BCC4992
CAS No.:1032754-93-0
- PTIQ
Catalog No.:BCC7953
CAS No.:1032822-42-6
The lipid kinase PIP5K1C regulates pain signaling and sensitization.[Pubmed:24853942]
Neuron. 2014 May 21;82(4):836-47.
Numerous pain-producing (pronociceptive) receptors signal via phosphatidylinositol 4,5-bisphosphate (PIP2) hydrolysis. However, it is currently unknown which lipid kinases generate PIP2 in nociceptive dorsal root ganglia (DRG) neurons and if these kinases regulate pronociceptive receptor signaling. Here, we found that phosphatidylinositol 4-phosphate 5 kinase type 1C (PIP5K1C) is expressed at higher levels than any other PIP5K and, based on experiments with Pip5k1c(+/-) mice, generates at least half of all PIP2 in DRG neurons. Additionally, Pip5k1c haploinsufficiency reduces pronociceptive receptor signaling and TRPV1 sensitization in DRG neurons as well as thermal and mechanical hypersensitivity in mouse models of chronic pain. We identified a small molecule inhibitor of PIP5K1C (UNC3230) in a high-throughput screen. UNC3230 lowered PIP2 levels in DRG neurons and attenuated hypersensitivity when administered intrathecally or into the hindpaw. Our studies reveal that PIP5K1C regulates PIP2-dependent nociceptive signaling and suggest that PIP5K1C is a therapeutic target for chronic pain.