D-Arabinose

CAS# 10323-20-3

D-Arabinose

Catalog No. BCN3791----Order now to get a substantial discount!

Product Name & Size Price Stock
D-Arabinose: 5mg $23 In Stock
D-Arabinose: 10mg Please Inquire In Stock
D-Arabinose: 20mg Please Inquire Please Inquire
D-Arabinose: 50mg Please Inquire Please Inquire
D-Arabinose: 100mg Please Inquire Please Inquire
D-Arabinose: 200mg Please Inquire Please Inquire
D-Arabinose: 500mg Please Inquire Please Inquire
D-Arabinose: 1000mg Please Inquire Please Inquire
Related Products

Quality Control of D-Arabinose

Number of papers citing our products

Chemical structure

D-Arabinose

3D structure

Chemical Properties of D-Arabinose

Cas No. 10323-20-3 SDF Download SDF
PubChem ID 66308 Appearance Powder
Formula C5H10O5 M.Wt 150.1
Type of Compound Miscellaneous Storage Desiccate at -20°C
Solubility Soluble in Chloroform,Dichloromethane,Ethyl Acetate,DMSO,Acetone,etc.
Chemical Name (2S,3R,4R)-2,3,4,5-tetrahydroxypentanal
SMILES C(C(C(C(C=O)O)O)O)O
Standard InChIKey PYMYPHUHKUWMLA-WDCZJNDASA-N
Standard InChI InChI=1S/C5H10O5/c6-1-3(8)5(10)4(9)2-7/h1,3-5,7-10H,2H2/t3-,4-,5+/m1/s1
General tips For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months.
We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months.
Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it.
About Packaging 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial.
2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial.
3. Try to avoid loss or contamination during the experiment.
Shipping Condition Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request.

Source of D-Arabinose

The herbs of Rehmannia glutinosa

Biological Activity of D-Arabinose

DescriptionBiosynthesis of D-arabinose in mycobacteria - a novel bacterial pathway with implications for antimycobacterial therapy.
TargetsAntifection

Protocol of D-Arabinose

Structure Identification
FEBS J. 2008 Jun;275(11):2691-711.

Biosynthesis of D-arabinose in mycobacteria - a novel bacterial pathway with implications for antimycobacterial therapy.[Pubmed: 18422659 ]


METHODS AND RESULTS:
Decaprenyl-phospho-arabinose (beta-D-arabinofuranosyl-1-O-monophosphodecaprenol), the only known donor of D-Arabinose in bacteria, and its precursor, decaprenyl-phospho-ribose (beta-D-ribofuranosyl-1-O-monophosphodecaprenol), were first described in 1992. En route to D-arabinofuranose, the decaprenyl-phospho-ribose 2'-epimerase converts decaprenyl-phospho-ribose to decaprenyl-phospho-arabinose, which is a substrate for arabinosyltransferases in the synthesis of the cell-wall arabinogalactan and lipoarabinomannan polysaccharides of mycobacteria. The first step of the proposed decaprenyl-phospho-arabinose biosynthesis pathway in Mycobacterium tuberculosis and related actinobacteria is the formation of D-ribose 5-phosphate from sedoheptulose 7-phosphate, catalysed by the Rv1449 transketolase, and/or the isomerization of d-ribulose 5-phosphate, catalysed by the Rv2465 d-ribose 5-phosphate isomerase. d-Ribose 5-phosphate is a substrate for the Rv1017 phosphoribosyl pyrophosphate synthetase which forms 5-phosphoribosyl 1-pyrophosphate (PRPP). The activated 5-phosphoribofuranosyl residue of PRPP is transferred by the Rv3806 5-phosphoribosyltransferase to decaprenyl phosphate, thus forming 5'-phosphoribosyl-monophospho-decaprenol. The dephosphorylation of 5'-phosphoribosyl-monophospho-decaprenol to decaprenyl-phospho-ribose by the putative Rv3807 phospholipid phosphatase is the committed step of the pathway. A subsequent 2'-epimerization of decaprenyl-phospho-ribose by the heteromeric Rv3790/Rv3791 2'-epimerase leads to the formation of the decaprenyl-phospho-arabinose precursor for the synthesis of the cell-wall arabinans in Actinomycetales. The mycobacterial 2'-epimerase Rv3790 subunit is similar to the fungal D-arabinono-1,4-lactone oxidase, the last enzyme in the biosynthesis of D-erythroascorbic acid, thus pointing to an evolutionary link between the D-arabinofuranose- and L-ascorbic acid-related pathways. Decaprenyl-phospho-arabinose has been a lead compound for the chemical synthesis of substrates for mycobacterial arabinosyltransferases and of new inhibitors and potential antituberculosis drugs. The peculiar (omega,mono-E,octa-Z) configuration of decaprenol has yielded insights into lipid biosynthesis, and has led to the identification of the novel Z-polyprenyl diphosphate synthases of mycobacteria. Mass spectrometric methods were developed for the analysis of anomeric linkages and of dolichol phosphate-related lipids.
CONCLUSIONS:
In the field of immunology, the renaissance in mycobacterial polyisoprenoid research has led to the identification of mimetic mannosyl-beta-1-phosphomycoketides of pathogenic mycobacteria as potent lipid antigens presented by CD1c proteins to human T cells.

D-Arabinose Dilution Calculator

Concentration (start)
x
Volume (start)
=
Concentration (final)
x
Volume (final)
 
 
 
C1
V1
C2
V2

calculate

D-Arabinose Molarity Calculator

Mass
=
Concentration
x
Volume
x
MW*
 
 
 
g/mol

calculate

Preparing Stock Solutions of D-Arabinose

1 mg 5 mg 10 mg 20 mg 25 mg
1 mM 6.6622 mL 33.3111 mL 66.6223 mL 133.2445 mL 166.5556 mL
5 mM 1.3324 mL 6.6622 mL 13.3245 mL 26.6489 mL 33.3111 mL
10 mM 0.6662 mL 3.3311 mL 6.6622 mL 13.3245 mL 16.6556 mL
50 mM 0.1332 mL 0.6662 mL 1.3324 mL 2.6649 mL 3.3311 mL
100 mM 0.0666 mL 0.3331 mL 0.6662 mL 1.3324 mL 1.6656 mL
* Note: If you are in the process of experiment, it's necessary to make the dilution ratios of the samples. The dilution data above is only for reference. Normally, it's can get a better solubility within lower of Concentrations.

Organizitions Citing Our Products recently

 
 
 

Calcutta University

University of Minnesota

University of Maryland School of Medicine

University of Illinois at Chicago

The Ohio State University

University of Zurich

Harvard University

Colorado State University

Auburn University

Yale University

Worcester Polytechnic Institute

Washington State University

Stanford University

University of Leipzig

Universidade da Beira Interior

The Institute of Cancer Research

Heidelberg University

University of Amsterdam

University of Auckland
TsingHua University
TsingHua University
The University of Michigan
The University of Michigan
Miami University
Miami University
DRURY University
DRURY University
Jilin University
Jilin University
Fudan University
Fudan University
Wuhan University
Wuhan University
Sun Yat-sen University
Sun Yat-sen University
Universite de Paris
Universite de Paris
Deemed University
Deemed University
Auckland University
Auckland University
The University of Tokyo
The University of Tokyo
Korea University
Korea University

Background on D-Arabinose

D-Arabinose is found in sweet basil. Arabinose is an aldopentose a monosaccharide containing five carbon atoms, and including an aldehyde (CHO) functional group.
Featured Products
New Products
 

References on D-Arabinose

Biosynthesis of D-arabinose in mycobacteria - a novel bacterial pathway with implications for antimycobacterial therapy.[Pubmed:18422659]

FEBS J. 2008 Jun;275(11):2691-711.

Decaprenyl-phospho-arabinose (beta-D-arabinofuranosyl-1-O-monophosphodecaprenol), the only known donor of D-Arabinose in bacteria, and its precursor, decaprenyl-phospho-ribose (beta-D-ribofuranosyl-1-O-monophosphodecaprenol), were first described in 1992. En route to D-arabinofuranose, the decaprenyl-phospho-ribose 2'-epimerase converts decaprenyl-phospho-ribose to decaprenyl-phospho-arabinose, which is a substrate for arabinosyltransferases in the synthesis of the cell-wall arabinogalactan and lipoarabinomannan polysaccharides of mycobacteria. The first step of the proposed decaprenyl-phospho-arabinose biosynthesis pathway in Mycobacterium tuberculosis and related actinobacteria is the formation of D-ribose 5-phosphate from sedoheptulose 7-phosphate, catalysed by the Rv1449 transketolase, and/or the isomerization of d-ribulose 5-phosphate, catalysed by the Rv2465 d-ribose 5-phosphate isomerase. d-Ribose 5-phosphate is a substrate for the Rv1017 phosphoribosyl pyrophosphate synthetase which forms 5-phosphoribosyl 1-pyrophosphate (PRPP). The activated 5-phosphoribofuranosyl residue of PRPP is transferred by the Rv3806 5-phosphoribosyltransferase to decaprenyl phosphate, thus forming 5'-phosphoribosyl-monophospho-decaprenol. The dephosphorylation of 5'-phosphoribosyl-monophospho-decaprenol to decaprenyl-phospho-ribose by the putative Rv3807 phospholipid phosphatase is the committed step of the pathway. A subsequent 2'-epimerization of decaprenyl-phospho-ribose by the heteromeric Rv3790/Rv3791 2'-epimerase leads to the formation of the decaprenyl-phospho-arabinose precursor for the synthesis of the cell-wall arabinans in Actinomycetales. The mycobacterial 2'-epimerase Rv3790 subunit is similar to the fungal D-arabinono-1,4-lactone oxidase, the last enzyme in the biosynthesis of D-erythroascorbic acid, thus pointing to an evolutionary link between the D-arabinofuranose- and L-ascorbic acid-related pathways. Decaprenyl-phospho-arabinose has been a lead compound for the chemical synthesis of substrates for mycobacterial arabinosyltransferases and of new inhibitors and potential antituberculosis drugs. The peculiar (omega,mono-E,octa-Z) configuration of decaprenol has yielded insights into lipid biosynthesis, and has led to the identification of the novel Z-polyprenyl diphosphate synthases of mycobacteria. Mass spectrometric methods were developed for the analysis of anomeric linkages and of dolichol phosphate-related lipids. In the field of immunology, the renaissance in mycobacterial polyisoprenoid research has led to the identification of mimetic mannosyl-beta-1-phosphomycoketides of pathogenic mycobacteria as potent lipid antigens presented by CD1c proteins to human T cells.

Biosynthesis of d-arabinose in Mycobacterium smegmatis: specific labeling from d-glucose.[Pubmed:11831854]

Arch Biochem Biophys. 2002 Feb 15;398(2):229-39.

D-Arabinose is a major sugar in the cell wall polysaccharides of Mycobacterium tuberculosis and other mycobacterial species. The reactions involved in the biosynthesis and activation of D-Arabinose represent excellent potential sites for drug intervention since D-Arabinose is not found in mammalian cells, and the cell wall arabinomannan and/or arabinogalactan appear to be essential for cell survival. Since the pathway involved in conversion of d-glucose to D-Arabinose is unknown, we incubated cells of Mycobacterium smegmatis individually with [1-(14)C]glucose, [3,4-(14)C]glucose, and [6-(14)C]glucose and compared the specific activities of the cell wall-bound arabinose. Although the specific activity of the arabinose was about 25% lower with [6-(14)C]glucose than with other labels, there did not appear to be selective loss of either carbon 1 or carbon 6, suggesting that arabinose was not formed by loss of carbon 1 of glucose via the oxidative step of the pentose phosphate pathway, or by loss of carbon 6 in the uronic acid pathway. Similar labeling patterns were observed with ribose isolated from the nucleic acid fraction. Since these results suggested an unusual pathway of pentose formation, labeling studies were also done with [1-(13)C]glucose, [2-(13)C]glucose, and [6-(13)C]glucose and the cell wall arabinose was examined by NMR analysis. This method allows one to determine the relative (13)C content in each carbon of the arabinose. The labeling patterns suggested that the most likely pathway was condensation of carbons 1 and 2 of fructose 6-phosphate produced by the transaldolase reaction with carbons 4, 5, and 6 (i.e., glyceraldehyde 3-phosphate) formed by fructose-1,6 bisphosphate aldolase. Cell-free enzyme extracts of M. smegmatis were incubated with ribose 5-phosphate, xylulose 5-phosphate, and D-Arabinose 5-phosphate under a variety of experimental conditions. Although the ribose 5-phosphate and xylulose 5-phosphate were converted to other pentoses and hexoses, no arabinose 5-phosphate (or free arabinose) was detected in any of these reactions. In addition, these enzyme extracts did not convert arabinose 5-phosphate to any other pentose or hexose. In addition, incubation of [(14)C]glucose 6-phosphate and various nucleoside triphosphates (ATP, CTP, GTP, TTP, and UTP) with cytosolic or membrane fractions from the mycobacterial cells did not result in formation of a nucleotide form of arabinose, although other radioactive sugars including rhamnose and galactose were found in the nucleotide fraction. Furthermore, no radioactive arabinose was found in the nucleotide fraction isolated from M. smegmatis cells grown in [(3)H]glucose, nor was arabinose detected in a large-scale extraction of the sugar nucleotide fraction from 300 g of cells. The logical conclusion from these studies is that D-Arabinose is probably produced from d-ribose by epimerization of carbon 2 of the ribose moiety of polyprenylphosphate-ribose to form polyprenylphosphate-arabinose, which is then used as the precursor for formation of arabinosyl polymers.

Description

D-arabinose is an endogenous metabolite.

Keywords:

D-Arabinose,10323-20-3,Natural Products, buy D-Arabinose , D-Arabinose supplier , purchase D-Arabinose , D-Arabinose cost , D-Arabinose manufacturer , order D-Arabinose , high purity D-Arabinose

Online Inquiry for:

      Fill out the information below

      • Size:Qty: - +

      * Required Fields

                                      Result: