WAY-600MTOR inhibitor CAS# 1062159-35-6 |
Quality Control & MSDS
Number of papers citing our products
Chemical structure
3D structure
Cas No. | 1062159-35-6 | SDF | Download SDF |
PubChem ID | 25229526 | Appearance | Powder |
Formula | C28H30N8O | M.Wt | 494.59 |
Type of Compound | N/A | Storage | Desiccate at -20°C |
Solubility | Soluble in DMSO > 10 mM | ||
Chemical Name | 4-[6-(1H-indol-5-yl)-1-[1-(pyridin-3-ylmethyl)piperidin-4-yl]pyrazolo[3,4-d]pyrimidin-4-yl]morpholine | ||
SMILES | C1CN(CCC1N2C3=C(C=N2)C(=NC(=N3)C4=CC5=C(C=C4)NC=C5)N6CCOCC6)CC7=CN=CC=C7 | ||
Standard InChIKey | FPEIJQLXFHKLJV-UHFFFAOYSA-N | ||
Standard InChI | InChI=1S/C28H30N8O/c1-2-20(17-29-8-1)19-34-10-6-23(7-11-34)36-28-24(18-31-36)27(35-12-14-37-15-13-35)32-26(33-28)22-3-4-25-21(16-22)5-9-30-25/h1-5,8-9,16-18,23,30H,6-7,10-15,19H2 | ||
General tips | For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months. We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months. Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it. |
||
About Packaging | 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial. 2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial. 3. Try to avoid loss or contamination during the experiment. |
||
Shipping Condition | Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request. |
Description | WAY-600 is a potent, ATP-competitive, and selective mTOR inhibitor with an IC50 of 9 nM for recombinant mTOR enzyme. WAY-600 blocks mTOR complex 1/2 (mTORC1/2) assemble and activation.In Vitro:WAY-600 exhibits a concentration-dependent and time-dependent inhibition of f HepG2 and Huh-7 cells viability. Following WAY-600 (1-1000 nM) treatment, the number of HepG2 cell colonies is dramatically decreased. Meanwhile, BrdU incorporation in HepG2 cells is also inhibited with WAY-600 treatment. WAY-600 dose-dependently increases the activity of caspase-3 and caspase-9 in HepG2 cells. WAY-600 disrupts assemble of mTORC1 (mTOR-Raptor association) and mTORC2 (mTOR-Rictor association). Activation of mTORC1 (indicated by p-S6K1 and p-4E-BP1) and mTORC2 is almost blocked by WAY-600 (100 nM)[2].In Vivo:Administration of WAY-600 (10 mg/kg, daily) inhibits HepG2 tumor growth in nude mice. Daily HepG2 tumor growth of WAY-600-administrated mice is significantly lower than that of vehicle control mice. Importantly, the in vivo anti-cancer activity by WAY-600 is further potentiated with the co-administration of MEK-162 (2.5 mg/kg, p.o. daily)[2]. References: |
WAY-600 Dilution Calculator
WAY-600 Molarity Calculator
1 mg | 5 mg | 10 mg | 20 mg | 25 mg | |
1 mM | 2.0219 mL | 10.1094 mL | 20.2188 mL | 40.4375 mL | 50.5469 mL |
5 mM | 0.4044 mL | 2.0219 mL | 4.0438 mL | 8.0875 mL | 10.1094 mL |
10 mM | 0.2022 mL | 1.0109 mL | 2.0219 mL | 4.0438 mL | 5.0547 mL |
50 mM | 0.0404 mL | 0.2022 mL | 0.4044 mL | 0.8088 mL | 1.0109 mL |
100 mM | 0.0202 mL | 0.1011 mL | 0.2022 mL | 0.4044 mL | 0.5055 mL |
* Note: If you are in the process of experiment, it's necessary to make the dilution ratios of the samples. The dilution data above is only for reference. Normally, it's can get a better solubility within lower of Concentrations. |
Calcutta University
University of Minnesota
University of Maryland School of Medicine
University of Illinois at Chicago
The Ohio State University
University of Zurich
Harvard University
Colorado State University
Auburn University
Yale University
Worcester Polytechnic Institute
Washington State University
Stanford University
University of Leipzig
Universidade da Beira Interior
The Institute of Cancer Research
Heidelberg University
University of Amsterdam
University of Auckland
TsingHua University
The University of Michigan
Miami University
DRURY University
Jilin University
Fudan University
Wuhan University
Sun Yat-sen University
Universite de Paris
Deemed University
Auckland University
The University of Tokyo
Korea University
WAY-600 is a potent, ATP-competitive and selective inhibitor of mTOR with IC50 of 9 nM; blocks mTORC1/P-S6K(T389) and mTORC2/P-AKT(S473) but not P-AKT(T308); selective for mTOR than PI3Kα (>100-fold) and PI3Kγ (>500-fold).
- TC-G 1004
Catalog No.:BCC6165
CAS No.:1061747-72-5
- PND-1186
Catalog No.:BCC1866
CAS No.:1061353-68-1
- Senktide
Catalog No.:BCC6921
CAS No.:106128-89-6
- Hoechst 33342 analog 2
Catalog No.:BCC1631
CAS No.:106050-84-4
- Palmatine hydrochloride
Catalog No.:BCN5914
CAS No.:10605-02-4
- β-Interleukin I (163-171), human
Catalog No.:BCC1017
CAS No.:106021-96-9
- Nerol
Catalog No.:BCN8517
CAS No.:106-25-2
- Geraniol
Catalog No.:BCN2631
CAS No.:106-24-1
- 2-(3,4-Dihydroxyphenyl)ethanol
Catalog No.:BCN5871
CAS No.:10597-60-1
- Sulfocostunolide B
Catalog No.:BCN5870
CAS No.:1059671-65-6
- Clinafloxacin CI96 AM1091
Catalog No.:BCC3754
CAS No.:105956-97-6
- OLDA
Catalog No.:BCC7138
CAS No.:105955-11-1
- WYE-687
Catalog No.:BCC4604
CAS No.:1062161-90-3
- WYE-354
Catalog No.:BCC1059
CAS No.:1062169-56-5
- Ro3280
Catalog No.:BCC3962
CAS No.:1062243-51-9
- LDN-193189
Catalog No.:BCC3687
CAS No.:1062368-24-4
- ML347
Catalog No.:BCC5331
CAS No.:1062368-49-3
- LDN193189 Hydrochloride
Catalog No.:BCC1695
CAS No.:1062368-62-0
- Thioperamide
Catalog No.:BCC6734
CAS No.:106243-16-7
- 4-[(4-Methylpiperazin-1-yl) methyl]benzoic acid dihydrochloride
Catalog No.:BCC8669
CAS No.:106261-49-8
- Risperidone
Catalog No.:BCC3850
CAS No.:106266-06-2
- Sikokianin A
Catalog No.:BCN3133
CAS No.:106293-99-6
- Nomilin
Catalog No.:BCN1034
CAS No.:1063-77-0
- Rufinamide
Catalog No.:BCC5078
CAS No.:106308-44-5
DNA-PKcs interference sensitizes colorectal cancer cells to a mTOR kinase inhibitor WAY-600.[Pubmed:26381179]
Biochem Biophys Res Commun. 2015 Oct 23;466(3):547-53.
Colorectal cancer (CRC) is one leading contributor of cancer-related mortalities. Mammalian target of rapamycin (mTOR), existing in two complexes (mTORC1/2), is a valuable target for possible CRC interference. In the current study, we showed that WAY-600, a potent mTOR inhibitor, only exerted moderate activity against primary and HT-29 CRC cells. We proposed that DNA-dependent protein kinase catalytic subunit (DNA-PKcs) could be the major resistance factor of WAY-600 in CRC cells. DNA-PKcs inhibitors, including NU7026 and NU7441, dramatically enhanced WAY-600-induced cytotoxic and pro-apoptotic effect against the CRC cells. Further, WAY-600-exerted cytotoxicity was significantly increased in DNA-PKcs-silenced (by targeted siRNA/shRNA) CRC cells, but was attenuated with DNA-PKcs overexpression. Our evidence suggested that DNA-PKcs Thr-2609 phosphorylation might be critical for WAY-600's resistance. Mutation of this site through introducing a dominant negative DNA-PKcs (T2609A) dramatically potentiated WAY-600's sensitivity in HT-29 cells. Meanwhile, overexpression of protein phosphatase 5 (PP5) dephosphorylated DNA-PKcs at Thr-2609, and significantly increased WAY-600's sensitivity in HT-29 cells. In vivo, WAY-600-induced anti-HT-29 xenograft growth activity was significantly potentiated with NU7026 co-administration. These results suggest that DNA-PKcs could be the major resistance factor of WAY-600 in CRC cells.
MEK-ERK inhibition potentiates WAY-600-induced anti-cancer efficiency in preclinical hepatocellular carcinoma (HCC) models.[Pubmed:27107695]
Biochem Biophys Res Commun. 2016 May 27;474(2):330-337.
The search for novel anti-hepatocellular carcinoma (HCC) agents is important. Mammalian target of rapamycin (mTOR) hyper-activation plays a pivotal role in promoting HCC tumorigenesis and chemoresistance. The current preclinical study evaluated the potential anti-HCC activity by a potent mTOR kinase inhibitor, WAY-600. We showed that WAY-600 inhibited survival and proliferation of HCC cell lines (HepG2 and Huh7) and primary human HCC cells. Caspase-dependent apoptosis was activated by WAY-600 in above HCC cells. Reversely, caspase inhibitors largely attenuated WAY-600's lethality against HCC cells. At the signaling level, WAY-600 blocked mTOR complex 1/2 (mTORC1/2) assemble and activation, yet activated MEK-ERK pathway in HCC cells. MEK-ERK inhibitors, PD-98059 and MEK-162, or MEK1/2 shRNA significantly potentiated WAY-600's cytotoxicity in HCC cells. Further studies showed that WAY-600 intraperitoneal (i.p.) administration in nude mice inhibited p-AKT Ser-473 and displayed significant anti-cancer activity against HepG2 xenografts. Remarkably, co-administration of MEK-162 further potentiated WAY-600's anti-HCC activity in vivo. These preclinical results demonstrate the potent anti-HCC activity by WAY-600, either alone or with MEK-ERK inhibitors.