Home >>Botany >> Centella asiatica

Centella asiatica

Centella asiatica

1. The products in our compound library are selected from thousands of unique natural products; 2. It has the characteristics of diverse structure, diverse sources and wide coverage of activities; 3. Provide information on the activity of products from major journals, patents and research reports around the world, providing theoretical direction and research basis for further research and screening; 4. Free combination according to the type, source, target and disease of natural product; 5. The compound powder is placed in a covered tube and then discharged into a 10 x 10 cryostat; 6. Transport in ice pack or dry ice pack. Please store it at -20 °C as soon as possible after receiving the product, and use it as soon as possible after opening.

Natural products/compounds from  Centella asiatica

  1. Cat.No. Product Name CAS Number COA
  2. BCN5890 Succinic acid110-15-6 Instructions
  3. BCN6049 Quercetin117-39-5 Instructions
  4. BCN6105 Vanillic acid121-34-6 Instructions
  5. BCN8709 Asiaticoside B125265-68-1 Instructions
  6. BCN1068 Ginsenoside Rg314197-60-5 Instructions
  7. BCN1668 Gallic acid149-91-7 Instructions
  8. BCN1011 Asiaticoside16830-15-2 Instructions
  9. BCN3857 (-)-beta-Pinene18172-67-3 Instructions
  10. BCN1013 Madecassic acid18449-41-7 Instructions
  11. BCN5893 Rosmarinic acid20283-92-5 Instructions
  12. BCN3149 Quercetin-3-O-glucuronide22688-79-5 Instructions
  13. BCN5908 Isochlorogenic acid A2450-53-5 Instructions
  14. BCN5913 1,5-Dicaffeoylquinic acid30964-13-7 Instructions
  15. BCN5906 Chlorogenic acid327-97-9 Instructions
  16. BCN1012 Madecassoside34540-22-2 Instructions
  17. BCN5018 20(R)-Ginsenoside Rg338243-03-7 Instructions
  18. BCN5503 Corosolic acid4547-24-4 Instructions
  19. BCN5506 Asiatic acid464-92-6 Instructions
  20. BCN5531 Daucosterol474-58-8 Instructions
  21. BCN3181 Campesterol474-62-4 Instructions
  22. BCN5533 Ellagic acid476-66-4 Instructions
  23. BCN5549 Astragalin480-10-4 Instructions
  24. BCN5569 Isoquercitrin482-35-9 Instructions
  25. BCN3408 Gentisic acid490-79-9 Instructions
  26. BCN5653 Kaempferol520-18-3 Instructions
  27. BCN2205 D-Mannitol69-65-8 Instructions
  28. BCN2458 Bayogenin6989-24-8 Instructions
  29. BCN4327 Ursolic acid77-52-1 Instructions
  30. BCN4546 4-Hydroxybenzoic acid99-96-7 Instructions

References

Asiatic acid stabilizes cytoskeletal proteins and prevents TNF-α-induced disorganization of cell-cell junctions in human aortic endothelial cells.[Pubmed: 30114509]


Endothelial hyperpermeability represents an initiating step in early atherosclerosis and it often occurs as a result of endothelial barrier dysfunction. Asiatic acid, a major triterpene isolated from Centella asiatica (L.) Urban, has previously been demonstrated to protect against tumor necrosis factor (TNF)-α-induced endothelial barrier dysfunction. The present study aimed to investigate the mechanisms underlying the barrier protective effect of asiatic acid in human aortic endothelial cells (HAECs). The localization of F-actin, diphosphorylated myosin light chain (diphospho-MLC), adherens junctions (AJs) and tight junctions (TJs) was studied using immunocytochemistry technique and confocal microscopy. Their total protein expressions were examined using western blot analysis. The endothelial permeability was assessed using In Vitro Vascular Permeability Assay kits. In addition, intracellular redistribution of the junctional proteins was evaluated using subcellular fractionation kits. Asiatic acid stabilized F-actin and diphospho-MLC at cell periphery and prevented their rearrangement stimulated by TNF-α. However, asiatic acid failed to attenuate cytochalasin D-induced increased permeability. Besides, asiatic acid abrogated TNF-α-induced structural reorganization of vascular endothelial (VE)-cadherin and β-catenin by preserving their reticulum structures at cell-cell contact areas. In addition, asiatic acid also inhibited TNF-α-induced redistribution of occludin and zona occludens (ZO)-1 in different subcellular fractions. In conclusion, the barrier-stabilizing effect of asiatic acid might be associated with preservation of adherens junctions and prevention of TJ redistribution elicited by TNF-α. This study provides evidence to support the potential use of asiatic acid in the prevention of early atherosclerosis, which is initiated by endothelial barrier dysfunction.


Hippocampal amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid GluA1 (AMPA GluA1) receptor subunit involves in learning and memory improvement following treatment with Centella asiatica extract in adolescent rats.[Pubmed: 30105867]


Centella asiatica is an herbal plant that contains phytochemicals that are widely believed to have positive effects on cognitive function. The adolescent stage is a critical development period for the maturation of brain processes that encompass changes in physical and psychological systems. However, the effect of C. asiatica has not been extensively studied in adolescents. The aim of this study was therefore to investigate the effects of a C. asiatica extract on the enhancement of learning and memory in adolescent rats.


Anti-cancer activity of asiatic acid against human cholangiocarcinoma cells through inhibition of proliferation and induction of apoptosis.[Pubmed: 30084792]


Plant-derived anti-cancer agents have been of considerable interest due to their promising effectiveness with low side effects. Asiatic acid, the main constituent of the medicinal plant Centella asiatica (L.) Urban, has a wide range of biological properties such as antioxidant, anti-inflammatory and anti-cancer activities. Cholangiocarcinoma (CCA), which is a malignant tumor of bile duct epithelium, is one of the leading cancers in Southeast Asia, notably the northeast of Thailand where the liver fluke, Opisthorchis viverrini predominates. Many in vitro and in vivo studies have provided evidence supporting that oxidative stress induced by chronic inflammation is involved in CCA genesis with aggressive clinical outcomes. This study was performed to evaluate the cytotoxic effects of asiatic acid on two human CCA cell lines (KKU-156 and KKU-213). Cell viability was determined by a sulforhodamine B (SRB) assay. Morphological changes of the cells were observed by microscopy. Cell apoptosis was detected by flow cytometry using annexin V and propidium iodide (PI) staining. Messenger RNA (mRNA) expression levels of BAX, BCL2 and Survivin/BIRC5 were analyzed by real-time polymerase chain reaction (PCR). It was found that asiatic acid efficiently suppressed CCA cellular viability via induction of apoptosis. In addition, the occurrence of asiatic acid-induced apoptosis was confirmed by microscopic observation of apoptotic vesicles, down-regulation of anti-apoptotic genes (BCL2 and Survivin/BIRC5) and increased early and late apoptotic cells. Our results showed the chemotherapeutic activities of asiatic acid, suggesting the anti-cancer properties of this compound should be clinically assessed and its supplementation may lead to an improvement of survival of CCA patients.


Assessment of Toxicity and Absorption of the Novel AA Derivative AA-Pme in SGC7901 Cancer Cells In Vitro and in Zebrafish In Vivo.[Pubmed: 30076700]


BACKGROUND Asiatic acid (AA; 2α,3β,23-trihydroxyurs-12-ene-28-oic acid) is an active compound derived from Centella asiatica, a traditional medicinal plant used widely in many Asian countries, particularly for the treatment of cancer. However, the modified AA derivative N-(2α,3β,23-acetoxyurs-12-en-28-oyl)-l-proline methyl ester (AA-PMe) has shown markedly better anti-tumor activity than AA. MATERIAL AND METHODS We evaluated the toxicity of AA and AA-PMe on zebrafish morphology, mortality, and hatching rate and determined the effect on SGC7901 cancer cells by acute toxicity assay. AA-PMe absorption in vitro in SGC7901 cells and in vivo in zebrafish was determined by establishing a highly accurate and reproducible HPLC protocol. RESULTS In zebrafish, the toxicity of AA-PMe was lower than AA, with an acute toxic dose of AA-PMe above 25 μM, compared to acute toxicity at doses above 10 μM for AA. However, chronic toxicity of AA-PMe began occurring at doses below 25 μM but became apparent for AA at doses below 10 μM. Although low doses of AA-PMe were tolerated acutely, it became chronically toxic during zebrafish development, resulting in morphological abnormalities, including peripheral and abdominal edema, hemorrhage, abnormal body shape, enlarged yolk sac, and reduced motility. At low concentrations, absorption of AA-PMe by cells and zebrafish embryos occurred in a dose-dependent manner, but this stabilized as the concentration increased. CONCLUSIONS This pharmacokinetic study outlines the cellular and organismal effects of AA-PMe and suggests a theoretical basis that may underlie its mechanism of action.


Comparison of three different extracts of Centella asiatica for anti-amnesic, antioxidant and anticholinergic activities: in vitro and in vivo study.[Pubmed: 30021372]


Centella asiatica (CA) has been used by Ayurvedic medical practitioners in India for almost 3000 years. The neuropharmacological properties of CA and its constituents have been studied extensively. Anti-oxidant, free radical scavenging and cholinergic modulatory activities are the reported mechanisms of action for its efficacy in memory disorders. Its medicinal values are mainly attributed to the presence of several triterpenes, namely asiatic acid, madecassic acid, asiaticoside, and madecassoside. The present study was aimed to investigate the role of these triterpenes content in CA extract on the antioxidant, cholinesterase modulation and anti-amnesic properties. The fractions of CA extract enriched for (CAE-EF) and depleted/freed of (CAE-FF) triterpenes contents were compared with methanolic extract (CAE). Both in vitro and in vivo methods for evaluation of antioxidant and anticholinergic activities were used. In vitro, free radical scavenging assays (ABTS, DPPH, NO, NORAC, and ORAC) and cholinesterase (AChE and BuChE) inhibition assays were used. For evaluation of anti-amnesic effect, scopolamine induced amnesia in rats, as the acute model of memory loss was used. Following behavioural assessments (MWM, PA, EPM), biomarkers of oxidative stress (reduced GSH, MDA and SOD activity) and cholinesterase (AChE and BuChE) status were also estimated in cerebral cortex and hippocampus of rat brain. The methanolic extract (CAE) was found to perform best among all three fractions for in vitro free radical scavenging, cholinesterase inhibition, improvement of scopolamine-induced amnesia and also in vivo antioxidant effect and cholinesterase inhibitory activities. Interestingly triterpenes free fraction (CAE-FF) showed better antioxidant activity than triterpenes enriched fraction (CAE-EF) along with comparable anti-amnesic effect. This indicates that triterpenes are not solely responsible for antioxidant activity, cholinesterase inhibitory and anti-amnesic effect of CA.


Determination and quantification of asiaticoside in endophytic fungus from Centella asiatica (L.) Urban.[Pubmed: 29980864]


Centella asiatica (L.) Urban is a highly considered medicinal plant owing to its secondary metabolites asiaticoside, madecassoside, asiatic acid, and madecassic acid. The asiaticoside, one of the most important constituents of the plant, is a triterpenoid saponin having memory enhancement property. Given its medicinal properties, we isolated and characterized endophytic fungi from this plant with the aim to screen these microorganisms for asiaticoside production. In total, we isolated 13 endophytic fungi from the leaves of the plant, out of which one of the isolates produced asiaticoside. This asiaticoside producing isolate was identified as Colletotrichum gloeosporioides by internal transcribed spacer-based rDNA sequencing. The presence of asiaticoside in ethyl acetate extract of C. gloeosporioides was confirmed by LC-MS. The production of asiaticoside measured in relation to incubation time and subculture generation revealed presence of 62.29 ± 3.36 µg/100 mL of asiaticoside by C. gloeosporioides on the 15th day in first subculture generation followed by a decrease in subsequent generations. A similar trend was also shown by yield and growth curve of C. gloeosporioides. The asiaticoside production and yield were found to be positively correlated. This paper reported the production of asiaticoside by an endophytic fungus C. gloeosporioides for the first time. The present findings definitely provide an impetus to the production of asiaticoside by utilizing the endophytic source. Chemical compound studied in this article: Asiaticoside (PubChemCID: 108062).