SB 657510

Selective urotensin-II (UT) receptor antagonist CAS# 474960-44-6

SB 657510

Catalog No. BCC7713----Order now to get a substantial discount!

Product Name & Size Price Stock
SB 657510: 5mg $115 In Stock
SB 657510: 10mg Please Inquire In Stock
SB 657510: 20mg Please Inquire Please Inquire
SB 657510: 50mg Please Inquire Please Inquire
SB 657510: 100mg Please Inquire Please Inquire
SB 657510: 200mg Please Inquire Please Inquire
SB 657510: 500mg Please Inquire Please Inquire
SB 657510: 1000mg Please Inquire Please Inquire
Related Products
  • SB 431542

    Catalog No.:BCC3658
    CAS No.:301836-41-9
  • SB525334

    Catalog No.:BCC2531
    CAS No.:356559-20-1
  • A 77-01

    Catalog No.:BCC1318
    CAS No.:607737-87-1
  • SD-208

    Catalog No.:BCC1938
    CAS No.:627536-09-8
  • A 83-01

    Catalog No.:BCC1319
    CAS No.:909910-43-6

Quality Control of SB 657510

Number of papers citing our products

Chemical structure

SB 657510

3D structure

Chemical Properties of SB 657510

Cas No. 474960-44-6 SDF Download SDF
PubChem ID 11272107 Appearance Powder
Formula C19H22BrClN2O5S M.Wt 505.81
Type of Compound N/A Storage Desiccate at -20°C
Solubility Soluble to 100 mM in DMSO
Chemical Name 2-bromo-N-[4-chloro-3-[(3R)-1-methylpyrrolidin-3-yl]oxyphenyl]-4,5-dimethoxybenzenesulfonamide
SMILES CN1CCC(C1)OC2=C(C=CC(=C2)NS(=O)(=O)C3=C(C=C(C(=C3)OC)OC)Br)Cl
Standard InChIKey KQCZCINJGIRLCD-CYBMUJFWSA-N
Standard InChI InChI=1S/C19H22BrClN2O5S/c1-23-7-6-13(11-23)28-16-8-12(4-5-15(16)21)22-29(24,25)19-10-18(27-3)17(26-2)9-14(19)20/h4-5,8-10,13,22H,6-7,11H2,1-3H3/t13-/m1/s1
General tips For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months.
We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months.
Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it.
About Packaging 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial.
2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial.
3. Try to avoid loss or contamination during the experiment.
Shipping Condition Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request.

Biological Activity of SB 657510

DescriptionSelective urotensin-II (UT) receptor antagonist (Ki values are 61, 17, 30, 65 and 56 nM at human, monkey, cat, rat and mouse receptors respectively). Inhibits U-II-induced intracellular Ca2+ mobilization (IC50 = 180 nM) and antagonizes the contractile action of U-II in isolated mammalian arteries and aortae (EC50 = 50 - 189 nM).

SB 657510 Dilution Calculator

Concentration (start)
x
Volume (start)
=
Concentration (final)
x
Volume (final)
 
 
 
C1
V1
C2
V2

calculate

SB 657510 Molarity Calculator

Mass
=
Concentration
x
Volume
x
MW*
 
 
 
g/mol

calculate

Preparing Stock Solutions of SB 657510

1 mg 5 mg 10 mg 20 mg 25 mg
1 mM 1.977 mL 9.8851 mL 19.7703 mL 39.5405 mL 49.4257 mL
5 mM 0.3954 mL 1.977 mL 3.9541 mL 7.9081 mL 9.8851 mL
10 mM 0.1977 mL 0.9885 mL 1.977 mL 3.9541 mL 4.9426 mL
50 mM 0.0395 mL 0.1977 mL 0.3954 mL 0.7908 mL 0.9885 mL
100 mM 0.0198 mL 0.0989 mL 0.1977 mL 0.3954 mL 0.4943 mL
* Note: If you are in the process of experiment, it's necessary to make the dilution ratios of the samples. The dilution data above is only for reference. Normally, it's can get a better solubility within lower of Concentrations.

Organizitions Citing Our Products recently

 
 
 

Calcutta University

University of Minnesota

University of Maryland School of Medicine

University of Illinois at Chicago

The Ohio State University

University of Zurich

Harvard University

Colorado State University

Auburn University

Yale University

Worcester Polytechnic Institute

Washington State University

Stanford University

University of Leipzig

Universidade da Beira Interior

The Institute of Cancer Research

Heidelberg University

University of Amsterdam

University of Auckland
TsingHua University
TsingHua University
The University of Michigan
The University of Michigan
Miami University
Miami University
DRURY University
DRURY University
Jilin University
Jilin University
Fudan University
Fudan University
Wuhan University
Wuhan University
Sun Yat-sen University
Sun Yat-sen University
Universite de Paris
Universite de Paris
Deemed University
Deemed University
Auckland University
Auckland University
The University of Tokyo
The University of Tokyo
Korea University
Korea University
Featured Products
New Products
 

References on SB 657510

Fate and chemical speciation of antimony (Sb) during uptake, translocation and storage by rye grass using XANES spectroscopy.[Pubmed:28935406]

Environ Pollut. 2017 Dec;231(Pt 2):1322-1329.

Antimony (Sb) is a contaminant of increased prevalence in the environment, but there is little knowledge about the mechanisms of its uptake and translocation within plants. Here, we applied for the synchrotron based X-ray absorption near-edge structure (XANES) spectroscopy to analyze the speciation of Sb in roots and shoots of rye grass (Lolium perenne L. Calibra). Seedlings were grown in nutrient solutions to which either antimonite (Sb(III)), antimonate (Sb(V)) or trimethyl-Sb(V) (TMSb) were added. While exposure to Sb(III) led to around 100 times higher Sb accumulation in the roots than the other two treatments, there was no difference in total Sb in the shoots. Antimony taken up in the Sb(III) treatment was mainly found as Sb-thiol complexes (roots: >76% and shoots: 60%), suggesting detoxification reactions with compounds such as glutathione and phytochelatins. No reduction of accumulated Sb(V) was found in the roots, but half of the translocated Sb was reduced to Sb(III) in the Sb(V) treatment. Antimony accumulated in the TMSb treatment remained in the methylated form in the roots. By synchrotron based XANES spectroscopy, we were able to distinguish the major Sb compounds in plant tissue under different Sb treatments. The results help to understand the translocation and transformation of different Sb species in plants after uptake and provide information for risk assessment of plant growth in Sb contaminated soils.

Occurrence of selected elements (Ti, Sr, Ba, V, Ga, Sn, Tl, and Sb) in deposited dust and human hair samples: implications for human health in Pakistan.[Pubmed:29022181]

Environ Sci Pollut Res Int. 2018 May;25(13):12234-12245.

The current study determined, for the first time, the levels of titanium (Ti), strontium (Sr), barium (Ba), vanadium (V), gallium (Ga), tin (Sn), thallium (Tl), and antinomy (Sb), in deposited dust, and human hair collected from general population of different geographical areas of Pakistan. All the samples were prepared by microwave digestion and measured by ICP-MS. The results showed that on deposited dust samples, the detected elements followed the descending trend as: Ti > Sr > Ba > V > Ga > Sn > Tl > Sb similar to the upper continental crust. The deposited dust samples from low elevation areas exhibited highest levels of all studied elements (except antimony which was higher in soil samples from mountainous areas), followed by rive plains, mountainous areas, and highland valleys. In contrast, on human hair samples, the elements followed the descending trend as: Sr > Ba > Ti > Ga > V > Sn > Sb > Tl respectively. Ba, Ga, and V concentrations were higher in soil samples from lower elevation Indus plain, and Sr, Tl, Sb, and Ti were higher in samples from mountainous areas. The bioaccumulation trend of all studied elements was in descending order as follows: Sb, Ga, Sn, Ba, Sr, Ti, V, Tl, respectively. Principal component analysis (PCA) and correlation matrix evidenced both geological influences and anthropogenic activities as potential sources of these studied elements. On the other hand, the risk estimation (HI > 1) concluded that population were at higher health risk (non-carcinogenic) for Ga and Ti. All other studied rare elements were within safe limit for humans from all zones.

Lead-free perovskite solar cells using Sb and Bi-based A3B2X9 and A3BX6 crystals with normal and inverse cell structures.[Pubmed:28989856]

Nano Converg. 2017;4(1):26.

Research of CH3NH3PbI3 perovskite solar cells had significant attention as the candidate of new future energy. Due to the toxicity, however, lead (Pb) free photon harvesting layer should be discovered to replace the present CH3NH3PbI3 perovskite. In place of lead, we have tried antimony (Sb) and bismuth (Bi) with organic and metal monovalent cations (CH3NH3(+), Ag(+) and Cu(+)). Therefore, in this work, lead-free photo-absorber layers of (CH3NH3)3Bi2I9, (CH3NH3)3Sb2I9, (CH3NH3)3SbBiI9, Ag3BiI6, Ag3BiI3(SCN)3 and Cu3BiI6 were processed by solution deposition way to be solar cells. About the structure of solar cells, we have compared the normal (n-i-p: TiO2-perovskite-spiro OMeTAD) and inverted (p-i-n: NiO-perovskite-PCBM) structures. The normal (n-i-p)-structured solar cells performed better conversion efficiencies, basically. But, these environmental friendly photon absorber layers showed the uneven surface morphology with a particular grow pattern depend on the substrate (TiO2 or NiO). We have considered that the unevenness of surface morphology can deteriorate the photovoltaic performance and can hinder future prospect of these lead-free photon harvesting layers. However, we found new interesting finding about the progress of devices by the interface of NiO/Sb(3+) and TiO2/Cu3BiI6, which should be addressed in the future study.

Influence of weak magnetic field and tartrate on the oxidation and sequestration of Sb(III) by zerovalent iron: Batch and semi-continuous flow study.[Pubmed:28968561]

J Hazard Mater. 2018 Feb 5;343:266-275.

The influence of weak magnetic field (WMF) and tartrate on the oxidation and sequestration of Sb(III) by zerovalent iron (ZVI) was investigated with batch and semi-continuous reactors. The species analysis of antinomy in aqueous solution and solid precipitates implied that both Sb(III) adsorption preceding its conversion to Sb(V) in solid phase and Sb(III) oxidation to Sb(V) preceding its adsorption in aqueous phase occurred in the process of Sb(III) sequestration by ZVI. The application of WMF greatly increased the rate constants of Sbtot (total Sb) and Sb(III) disappearance during Sb(III)-tartrate and uncomplexed-Sb(III) sequestration by ZVI. The enhancing effect of WMF was primarily due to the accelerated ZVI corrosion in the presence of WMF, as evidenced by the influence of WMF on the change of solution and solid properties with reaction. However, tartrate greatly retarded Sb removal by ZVI. It was because tartrate inhibited ZVI corrosion, competed with Sb(III) and Sb(V) for the active surface sites, increased the negative surface charge of the generated iron (hydr)oxides due to its adsorption, and formed soluble complexes with Fe(III). The positive effect of WMF on Sb(III)-tartrate and uncomplexed-Sb(III) removal by ZVI was also verified with a magnetic semi-continuous reactor.

Structural and Optical Properties of Sb-Substituted BiSI Grown from Sulfur/Iodine Flux.[Pubmed:28967746]

Inorg Chem. 2017 Oct 16;56(20):12362-12368.

Bismuth and antimony were reacted in sulfur/iodine flux mixtures at various temperatures and iodine concentrations to explore the effects of these variables on the synthesis and properties of Bi1-xSbxSI products. The products grow as crystals; microprobe elemental analysis and UV/vis/NIR spectroscopy of the Bi1-xSbxSI solid solutions indicate that substitution is homogeneous within individual crystals but varies up to 15% between crystals within each synthesis batch. Raman spectra show a two-mode behavior upon substitution, indicating covalent bonding within the structure, and TEM/SEM data confirm no presence of nanoclustering or segregation within the crystals.

Palosuran inhibits binding to primate UT receptors in cell membranes but demonstrates differential activity in intact cells and vascular tissues.[Pubmed:18587423]

Br J Pharmacol. 2008 Oct;155(3):374-86.

BACKGROUND AND PURPOSE: The recent development of the UT ligand palosuran (1-[2-(4-benzyl-4-hydroxy-piperidin-1-yl)-ethyl]-3-(2-methyl-quinolin-4-yl)-urea sulphate salt) has led to the proposition that urotensin-II (U-II) plays a significant pathological role in acute and chronic renal injury in the rat. EXPERIMENTAL APPROACH: In the present study, the pharmacological properties of palosuran were investigated further using a series of radioligand binding and functional bioassays. KEY RESULTS: Palosuran functioned as a 'primate-selective' UT ligand in recombinant cell membranes (monkey and human UT K(i) values of 4 +/- 1 and 5 +/- 1 nM), lacking appreciable affinity at other mammalian UT isoforms (rodent and feline K(i) values >1 microM). Paradoxically, however, palosuran lost significant (10- to 54-fold) affinity for native and recombinant human UT when radioligand binding was performed in intact cells (K(i) values of 50 +/- 3 and 276 +/- 67 nM). In accordance, palosuran also exhibited diminished activity in hUT (human urotensin-II receptor)-CHO (Chinese hamster ovary) cells (IC50 323 +/- 67 nM) and isolated arteries (K(b)>10 microM in rat aorta; K(b)>8.5 microM in cat arteries; K(b)>1.6 microM in monkey arteries; K(b) 2.2 +/- 0.6 microM in hUT transgenic mouse aorta). Relative to recombinant binding K(i) values, palosuran was subjected to a 392- to 690-fold reduction in functional activity in monkey isolated arteries. Such phenomena were peculiar to palosuran and were not apparent with an alternative chemotype, SB-657510 (2-bromo-N-[4-chloro-3-((R)-1-methyl-pyrrolidin-3-yloxy)-phenyl]-4,5-dimethoxyben zenesulphonamide HCl). CONCLUSIONS AND IMPLICATIONS: Collectively, such findings suggest that caution should be taken when interpreting data generated using palosuran. The loss of UT affinity/activity observed in intact cells and tissues cf. membranes offers a potential explanation for the disappointing clinical efficacy reported with palosuran in diabetic nephropathy patients. As such, the (patho)physiological significance of U-II in diabetic renal dysfunction remains uncertain.

Nonpeptidic urotensin-II receptor antagonists I: in vitro pharmacological characterization of SB-706375.[Pubmed:15852036]

Br J Pharmacol. 2005 Jul;145(5):620-35.

1. SB-706375 potently inhibited [(125)I]hU-II binding to both mammalian recombinant and 'native' UT receptors (K(i) 4.7+/-1.5 to 20.7+/-3.6 nM at rodent, feline and primate recombinant UT receptors and K(i) 5.4+/-0.4 nM at the endogenous UT receptor in SJRH30 cells). 2. Prior exposure to SB-706375 (1 microM, 30 min) did not alter [(125)I]hU-II binding affinity or density in recombinant cells (K(D) 3.1+/-0.4 vs 5.8+/-0.9 nM and B(max) 3.1+/-1.0 vs 2.8+/-0.8 pmol mg(-1)) consistent with a reversible mode of action. 3. The novel, nonpeptidic radioligand [(3)H]SB-657510, a close analogue of SB-706375, bound to the monkey UT receptor (K(D) 2.6+/-0.4 nM, B(max) 0.86+/-0.12 pmol mg(-1)) in a manner that was inhibited by both U-II isopeptides and SB-706375 (K(i) 4.6+/-1.4 to 17.6+/-5.4 nM) consistent with the sulphonamides and native U-II ligands sharing a common UT receptor binding domain. 4. SB-706375 was a potent, competitive hU-II antagonist across species with pK(b) 7.29-8.00 in HEK293-UT receptor cells (inhibition of [Ca(2+)](i)-mobilization) and pK(b) 7.47 in rat isolated aorta (inhibition of contraction). SB-706375 also reversed tone established in the rat aorta by prior exposure to hU-II (K(app) approximately 20 nM). 5. SB-706375 was a selective U-II antagonist with >/=100-fold selectivity for the human UT receptor compared to 86 distinct receptors, ion channels, enzymes, transporters and nuclear hormones (K(i)/IC(50)>1 microM). Accordingly, the contractile responses induced in isolated aortae by KCl, phenylephrine, angiotensin II and endothelin-1 were unaltered by SB-706375 (1 microM). 6. In summary, SB-706375 is a high-affinity, surmountable, reversible and selective nonpeptide UT receptor antagonist with cross-species activity that will assist in delineating the pathophysiological actions of U-II in mammals.

Description

SB-657510 is a selective urotensin II (UII) receptor (UT) antagonist. The Ki values are 61, 17, 30, 65 and 56 nM for human, monkey, cat, rat and mouse receptors, respectively. SB-657510 exerts anti-inflammatory effects by inhibiting UII-induced upregulation of inflammatory mediators such as adhesion molecules, cytokines, and tissue factor in human vascular endothelial cells.

Keywords:

SB 657510,474960-44-6,Natural Products,Urotensin-II Receptor, buy SB 657510 , SB 657510 supplier , purchase SB 657510 , SB 657510 cost , SB 657510 manufacturer , order SB 657510 , high purity SB 657510

Online Inquiry for:

      Fill out the information below

      • Size:Qty: - +

      * Required Fields

                                      Result: